



Software Versions 1310, 3310, 3350, 3351

#### Copyright ©2013

#### Blain Hydraulics GmbH

Alle Rechte vorbehalten. Dieses Textmaterial darf nicht – weder vollständig noch auszugsweise – reproduziert und in keiner Ausführung oder Form, weder elektronischer noch mechanischer Art, einschließlich Fotokopien und elektronmagnetischer Aufzeichnungen oder jedweder Form von Datenspeicherung und –abruf, ohne ausdrückliche schriftliche Genehmigung der Firma Blain Hydraulics verwendet werden.

Blain Hydraulics behält sich das Recht vor, technische Änderungen und Änderungen dieses Textmaterials ohne Vorankündigungen durchzuführen.

Blain Hydraulics übernimmt keinerlei Haftung für den Gebrauch der in diesem Textmaterial enthaltenen Informationen oder für Schäden, die aus dem Gebrauch der in diesem Textmaterial enthaltenen Informationen herrühren.

Blain und Yaskawa Logos in dieser Bedienungsanleitung sind eingetragene Warenzeichen der jeweiligen Firmen.

Technische Unterstützung:

#### Dr. Ferhat Celik

Tel: +49-7131-282139

Fax: +49-7131-485216

E-Mail: ferhat.celik@blain.de

Verkauf und Ersatzteile (siehe Anhang):

#### Verkauf

Tel: +49-7131-2821-0

Fax: +49-7131-485216

E-Mail: info@blain.de



## Inhaltsverzeichnis

| 1.     | ALLGEMEINE INFORMATIONEN                                            | 5      |
|--------|---------------------------------------------------------------------|--------|
| 1.1    | SICHERHEITSHINWEISE UND ALLGEMEINE WARNUNGEN                        | 5      |
| 1.2    | 2 LIEFERUMFANG                                                      | 5      |
| 1.3    | GARANTIE                                                            | 6      |
| 2.     | TECHNISCHE DATEN                                                    | 7      |
| 2.1    | VENTILEINSTELLUNGEN                                                 | 9      |
| 3.     | ELEKTRISCHER ANSCHLUSS                                              | 12     |
| 3.1    | ELEKTRISCHE VERDRAHTUNG                                             | 12     |
| 3.2    | 2 SIGNALEINGÄNGE (INPUT)                                            | 14     |
| 3.3    | EINGANGSSIGNAL MIT INTERNER SPANNUNGSVERSORGUNG (Sink-Mode)         | 14     |
| 3.4    | EINGANGSIGNAL MIT EXTERNER SPANNUNGSVERSORGUNG (Source-Mode)        | 14     |
| 3.5    | TEMPERATURSENSOR UND TEMPERATRMESSUMFORMER                          | 15     |
| 3.6    | ANSCHLUSS EXTERNER GERÄTE                                           | 15     |
| 3.7    | EINGABEEINHEITEN                                                    | 15     |
| 4.     | INSTALLATION                                                        | 22     |
| 4.1    | VENTIL INSTALLATION                                                 | 22     |
| 4.2    | 2 ELEKTRISCHE VERDRAHTUNG                                           | 22     |
| 4.3    | BEINSCHALTEN                                                        | 22     |
| 4.4    | INITIALISIERUNG DES UMRICHTERS                                      | 22     |
| 4.5    | ÜBERPRÜFUNG DER MOTORDREHRICHTUNG                                   | 22     |
| 4.6    | ANPASSUNG AN DEN MOTOR (TUNING)                                     | 23     |
| 4.7    | AUTO-TUNING                                                         | 23     |
| 4.8    | BENÖTIGTE MOTORDATEN                                                | 23     |
| 4.9    | ÜBERBLICK AUTO-TUNING MIT LAUFENDEM MOTOR                           | 24     |
| 4.1    | 0 AUTO-TUNING BEI BEREITS EXISTIERENDEN AGGREGATEN (UNTERÖLMOTOR+PU | MPE)25 |
| 4.1    | 1 AUTO TUNING MIT LAUFENDEM MOTOR                                   | 26     |
| 4.1    | 2 BEISPIEL AUTO-TUNING                                              | 26     |
| 4.1    | 3 AUTO-TUNING BEI STEHENDEM MOTOR                                   | 27     |
| 4.1    | 4 ÜBERPRÜFEN DES MOTORSCHLUPFES (E2-02)                             | 27     |
| 4.1    | 5 ÜBERPRÜFEN DES LEERLAUFSTROMS                                     | 27     |
| 4.1    | 6 MOTORPARAMETER FÜR EINIGE BEKANNTE MOTOREN                        | 27     |
| 4.1    | 7 GRUNDPARAMETER                                                    | 28     |
| 4.1    | 8 PARAMETERÜBERSICHT                                                | 28     |
| 4.1    | 9 PARAMETER DER SOLLKURVE                                           | 28     |
| 4.2    | 20 WIRKSAME RAMPENZEITEN                                            | 30     |
| 5.     | LERNFAHRT-FUNKTION                                                  | 31     |
| 5.1    | SCHRITT 1: ÜBERPRÜFEN DER SOLLKURVE                                 | 31     |
| Versio | n: 30.04.2019                                                       | 3      |



| 5.2 | 2  | SCHRITT 2: EINGABE DER P1-XX PARAMETER; ÖI-, PUMPEN- UND AUFZUGSDATEN | 33 |
|-----|----|-----------------------------------------------------------------------|----|
| 5.3 | 3  | PUMPENDATEN VOM BLAIN EV4 BERECHNUNGSPROGRAMM (www.blain.de/calc)     | 34 |
| 5.4 | 4  | SCHRITT 3: EINSTELLEN DES PARAMETERS P4-01=1                          | 35 |
| 5.5 | 5  | SCHRITT 4: LERNFAHRT VORBEREITEN                                      | 36 |
| 5.6 | 6  | SCHRITT 5: ALM ANZEIGE                                                | 36 |
| 5.7 | 7  | SCHRITT 6: LERNFAHRT MIT LEERER KABINE DRUCHFÜHREN                    | 36 |
| 5.8 | 3  | SCHRITT 7: PARAMETER SPEICHERN                                        | 37 |
| 6.  | FA | HRPARAMETER                                                           | 38 |
| 6.1 | 1  | P3-xx PARAMETER: REFERENZFREQUENZ UND LASTREFERENZEINSTELLUNGEN       | 38 |
| 6.2 | 2  | P4-01 PARAMETER: AUSWAHL DES BETRIEBSMODUS                            | 39 |
| 6.3 | 3  | P5-xx PARAMETER: EINSTELLUNG DER KOMPENSATIONSGRENZEN                 | 39 |
| 6.4 | 4  | P6-xx PARAMETER: PARAMETER DER WARTEFUNKTION                          | 39 |
| 6.5 | 5  | P7-xx PARAMETER: PARAMETER DER SCHLEICHFAHRTKORREKTUR                 | 40 |
| 6.6 | 6  | P8-xx PARAMETER: PARAMETER DER SONDERFUNKTIONEN                       | 41 |
| 6.7 | 7  | ÜBERWACHEN VON PARAMETERWERTEN                                        | 41 |
| 6.8 | 3  | BEISPIEL                                                              | 42 |
| 7.  | FA | NHRKURVE UND START BEFEHL                                             | 44 |
| 7.′ | 1  | START PROZEDUR                                                        | 44 |
| 7.3 | 3  | ABBRUCH DER FAHRT                                                     | 45 |
| 7.4 | 4  | QUELLE DER REFERENZFREQUENZ UND DES STARTSIGNALS                      | 45 |
| 8.  | SC | DNDERFUNKTIONEN                                                       | 46 |
| 8.1 | 1  | ZEITKOMPENSIERUNG BEI DER ABBREMSUNG                                  | 46 |
| 8.2 | 2  | GESCHWINDIGKEITSREGELUNG BEI DER SCHLEICHFAHRT                        | 46 |
| 8.3 | 3  | ÜBERWACHUNGDER SCHLEICHFAHRTDAUER                                     | 47 |
| 9.  | E١ | NERGIESPARBETRIEB / ÜBERLASTBETRIEB                                   | 48 |
| 10. | SC | DNSTIGE FUNKTIONEN                                                    | 49 |
| 10  | .1 | PARAMETERZUGRIFF (A1-01)                                              | 49 |
| 10  | .2 | BENUTZERDEFINIERTE VOREINSTELLUNGEN (02-03)                           | 49 |
| 10  | .3 | KOPIERFUNKTION (o3-01)                                                | 49 |
| 10  | .4 | UMRICHTER INITIALISIEREN (A1-03)                                      | 49 |
| 10  | .5 | MONITOR PARAMETER (UX1-XX)                                            | 50 |
| 11. | FE | INEINSTELLUNG UND FEHLERSUCHE                                         | 51 |
| 11  | .1 | IN AUFWÄRTSRICHTUNG                                                   | 51 |
| 11  | .2 | IN ABWÄRTSRICHTUNG                                                    | 53 |
| 12. | PA | ARAMETER BEI UNBEKANNTEN MOTOREN                                      | 54 |
| 13. | ٨N | NHANG 1 – MOTOR PARAMETER                                             | 55 |
| 14. | AN | NHANG 2 – ERSATZTEILLISTE                                             | 56 |
| 15. | AN | NHANG 3 – ÜBERSICHT LIEFERUMFANG EV4                                  | 57 |
| 16. | AN | NHANG 4 – DESIGN DES AGGREGATS                                        | 58 |



## **1. ALLGEMEINE INFORMATIONEN**

#### **1.1 SICHERHEITSHINWEISE UND ALLGEMEINE WARNUNGEN**

Installation, Inbetriebnahme und Wartung des EV4-Sets darf nur von qualifizierten Personen durchgeführt werden. Vor der Installation des EV4 Sets sind die Kurzanleitung und die Bedienungsanleitungen des L1000H/L1000A und diese EV4 Bedienungsanleitung zu lesen. Alle Sicherheitshinweise und Warnungen sind zu befolgen. Das EV4 Set muss entsprechend der Bedienungs-anleitungen und der jeweils gültigen Normen installiert werden.



Blain EV4 Ventil

Umrichter

Bild 1: EV4 Ventil und L1000H Umrichter

#### **1.2 LIEFERUMFANG**

Der Lieferumfang des EV4 Sets besteht aus folgenden Positionen (siehe auch Anhang 2):

- 1) EV4 Ventil
- 2) Yaskawa L1000H Frequenzumrichter
- 3) Temperatursensor
- 4) Temperaturmessumformer

- 5) Yaskawa EMV-Netzfilter
- 6) Yaskawa Netzdrossel
- 7) Kurzanleitung
- 8) EV4 Bedienungsanleitung



Der Aufbau des L1000H Umrichters basiert auf dem des L1000V (bis 15kW) und des L1000A (mehr als 15kW). Die Software jedoch ist an die Anforderungen von Hydraulikaufzügen angepasst. Doppelte Funktionen des L1000V/L1000A wurden deshalb zu Gunsten allgemeiner Funktionen entfernt. Daher ist die Bedienungsanleitung des L1000V/L1000A oder die Kurzanleitung des L1000H zu lesen, falls auf diese verwiesen wird.

Überprüfen Sie, ob Sie das richtige Ventil und Umrichter bekommen haben. Dazu vergleichen Sie bitte die Bezeichnungen auf den Typenschildern gemäß der folgenden Tabelle. Die Auswahl und Benutzung des EV4 Sets bleibt in der Verantwortung des Aufzugsherstellers oder des Betreibers.

|  | kW   | Umrichter Type         | Netzdrossel                      | EMV<br>Netzfilter      |  |
|--|------|------------------------|----------------------------------|------------------------|--|
|  | 3    | CIMR-LC4V0007BAA-0011  | B 09030 <b>84</b> oder           | ES22620 4E 07          |  |
|  | 4    | CIMR-LC4V0009BAA-0011  | B 1103136                        | F323039-1 <b>3-</b> 07 |  |
|  | 5.5  | CIMR-LC4V0015FAA-0011  | B 09030 <b>85</b> oder B 1103138 | ES23630- <b>30</b> -07 |  |
|  | 7.5  | CIMR-LC4V0018FAA-0011  | B 0903085 0del B 1103138         | F323039-30-07          |  |
|  | 11   | CIMR-LC4V0024FAA-0011  | B 0903086 oder B 1103139         | ES22620 50 07          |  |
|  | 15   | CIMR-LC4V0031FAA-0011  | B 0903087 oder B 1103140         | F323039 <b>-30-</b> 07 |  |
|  | 18,5 | CIMR-LC4A0039BAC-09120 | B 0010000 odor B 11031 <b>41</b> | FB-40044A              |  |
|  | 22   | CIMR-LC4F0045BAC-09120 | B 0910009 0del B 1103141         | EB 40060A              |  |
|  | 30   | CIMR-LC4F0060BAC-09120 | P.0010011 odor P.1102142         | FD-40060A              |  |
|  | 37   | CIMR-LC4F0075BAC-09120 | B 0910011 0del B 1103142         | ED 40105A              |  |
|  | 45   | CIMR-LC4F0091BAC-09120 | B 0010013                        | FD-40103A              |  |
|  | 55   | CIMR-LC4F0112CAC-09120 | 0910013                          | ED 401704              |  |
|  | 75   | CIMR-LC4F0150CAC-09120 |                                  | ГБ-40170A              |  |



Das EV4 Ventil nutzt den L1000H Yaskawa Umrichter für die Hubfahrt. Die Senkfahrt wird mechanisch gesteuert. Für eine bessere Qualität der Senkfahrt kann optional eine einfache Steuerung ausgewählt werden. Die Funktion des EV4 Ventils wurde werkseitig getestet und die Einstellungen in Senkfahrt eingestellt. Die notwendigen Umrichter-Parameter sind vom Installateur vor Ort einzustellen. Um die richtigen Parameter zu erhalten kann der Online Rechner auf http://www.blain.de/calc benutz werden bzw. das Smartphone App "EV4 Calculator" (siehe unter Google Play App Store).

Das EV4 Ventil kann entweder auf einem neuen oder einem bereits existierenden Aggregat installiert werden, ohne dass die Pumpe zusammen mit dem Motor oder das komplette Aggregat getauscht werden müssen.



Mit einer abgenutzten Pumpe kann unter Umständen die Nenngeschwindigkeit nicht erreicht werden. Der Leckverlust einer abgenutzten Pumpe kann bei Beladung der Kabine und/oder warmen Öl eventuell nicht mehr durch höhere Motordrehzahlen kompensiert werden. In einem solchen Fall ist ein Austausch der Pumpe notwendig.

Bevor der Motor abgewürgt wird, wird entweder in den Energiesparmodus geschaltet oder die Geschwindigkeit reduziert.

Der Yaskawa L1000H Umrichter nutzt eine speziell für Hydraulikaufzüge konzipierte Software, um eine hohe Fahrqualität unabhängig von Last- und Temperaturänderungen zu erzielen. Der aktuelle L1000H Umrichter (basierend auf dem L1000V) ist für hohe Beanspruchung (HD - heavy duty mode) für Motoren bis 15kW (20PS) Leistung verfügbar. Für Motoren über 16kW (22PS) findet der L1000H Umrichter basierend auf der L1000A Serie Verwendung.

Der EV4 bietet nicht nur ein energieeffizientes Design, sondern auch eine wirtschaftliche Lösung. Er hat bessere Fahreigenschaften, spart Energie und verringert den Einschaltstrom. Zusätzlich hat der EV4 vier verschiedene, einstellbare Geschwindigkeiten an. Siehe **Tabelle 1**.

| Geschwindigkeit              | Erklärung                | Bereich         |
|------------------------------|--------------------------|-----------------|
| Nenngeschwindigkeit          | Für Vollfahrt            | 0,05 – 1,00 m/s |
| Zwischengeschwindigkeit      | Für kurze Etagenabstände | 0,05 – 1,00 m/s |
| Inspektionsgeschwindigkeit   | Für Inspektionsfahrten   | 0,05 – 0,30 m/s |
| Schleichfahrtgeschwindigkeit | Für Schleichfahrt        | 0,00 – 0,15 m/s |

Tabelle 1: Geschwindigkeiten des EV4

Die Reihenfolge der Geschwindigkeiten sollte die folgende sein: Nenngeschwindigkeit > Zwischengeschwindigkeit > Inspektionsgeschwindigkeit > Schleichfahrtgeschwindigkeit. Falls dies so nicht der Fall sein sollte zeigt der Umrichter den Fehler oPE12 error an.

#### **1.3 GARANTIE**

Die Yaskawa L1000V/L1000A/L1000H Bedienungsanleitung, Kurzanleitung und die EV4 Bedienungsanleitung ist für qualifizierte Personal gedacht, das kompetent bei der Installation, Einstellung und Wartung von hydraulischen Aufzügen ist. Blain Hydraulics übernimmt keine Gewährleistung für jegliche Personenschäden, Sachschäden oder Schadensersatzansprüche, welche durch nicht sachgemäße Benutzung oder durch fehlende Sachkenntnis entstanden sind.

#### Erlöschen der Garantie:

Die Garantie erlischt, falls Komponenten oder Ersatzteile, die nicht den Originalteilen entsprechen, verwendet werden oder das Aufzugssystem oder der EV4 nicht von qualifizierten Personen installiert oder gewartet wurde.

Die Garantie erlischt ebenfalls, wenn das EV4 Set installiert wird, ohne die für den Verwendungsort gültigen Normen zu berücksichtigen (z.B. EN81-2 oder ASME 17.1).



## 2. TECHNISCHE DATEN

Das EV4 Ventil ist eine modifizierte Version der EV Ventilserie und kann deshalb auch leicht von Installateuren benutzt werden, die bereits Erfahrung mit Blain Ventilen haben. Wie aus Bild 1 ersichtlich, gibt es in der Aufwärtsrichtung nur noch ein Überdruckventil. Alle anderen Einstellungen wurden entfernt, da diese vom Yaskawa Umrichter gesteuert werden. Die Einstellungen für die Abwärtsfahrt sind dieselben wie beim EV100.



Bild 2: EV4 Ventilgrößen

Merkmale des EV4 Ventils:

Einfache Senkfahrt-Einstellung Temperatur und Druckkompensation Eingebaute Turbulenz-Unterdrückung Manometer mit Absperrhahn Selbstschließender Notablass Selbstreinigende Filter im Steuerölkreis Selbstreinigender Hauptfilter (Z-T) 70 HRc Rockwell gehärtete Bohrungsoberflächen 100% ED Magnet-Spulen

| Technische Daten   |       | ³∕₄" <b>EV4</b>     | 1½-2" EV4       | 21⁄2" EV4        |
|--------------------|-------|---------------------|-----------------|------------------|
| Durchfluss         | l/min | 10-125              | 30-800          | 500-1530         |
| Druckbereich       | bar   | 8-55                | 8-55            | 8-55             |
| Platzdruck Z       | bar   | 575                 | 505             | 340              |
| Druckabfall P–Z    | bar   | 6 bei 125 l/min     | 4 bei 800 l/min | 4 bei 1530 l/min |
| Gewicht            | kg    | 5                   | 10              | 14               |
| Öl Viskosität      |       | 25-75 cSt. bei 40°C |                 |                  |
| Max. Öltemperatur  |       | 55°C                |                 |                  |
| Schutzart WS und G | S     | IP 68               |                 |                  |
|                    |       |                     |                 |                  |

 Spannung AC
 24 V/1.8 A, 42 V/1.0 A, 110 V/0.43 A, 230 V/0.18 A, 50/60 Hz

 Spannung DC
 12 V/2.0 A, 24 V/1.1 A, 42 V/0.5 A, 48 V/0.6 A, 80 V/0.3 A, 110 V/0.25 A, 196 V/0.14 A

- AufwärtsBis 1 m/s mit 2 Voll- ,1 Schleichgeschwindigkeit und 1 Inspektionsgeschwindigkeit.Start, Geschwindigkeiten, Übergänge und Weichhalt werden über Parameter im Umrichter<br/>eingestellt.
- AbwärtsBis 1 m/s mit 1 Voll- und 1 Schleichfahrt.Alle Senkfunktionen sind sanft einstellbar.









DL

СХ

HP



Bild 3: Abmessungen EV4 Ventil

#### **Optionales Zubehör**

- ΕN Notstromspulen
- CSA CSA genehmigte Spulen
- KS Kolbensicherung
- ΒV Kugelhahn
- HX/MX Hilfssenkventil

- DH **Druckschalter Hochdruck** 
  - **Druckschalter Niederdruck**
  - Druckkompensiertes Senkventil
  - Handpumpe



Bild 4: Hydraulisches Steuerschema und Elektrisches Schaltdiagramm

#### Steuerelemente

- Magnetventil (Abbremsen ab) С
- D Magnetventil (Halt - ab)
- Н Notablassventil
- S Überdruckventil

- Umlaufkolben U
- V Rückschlagventil
- X Y Senkkolben
  - Schleichfahrtventil (ab)
- F Filter

#### **Einstellungen AB**

- Anfahrdrossel 6
- 7 Senkfahrteinstellung
- 8 Abbremsdrossel
- 9 Schleichfahrteinstellung





WARNUNG: Neueinstellungen und Wartungen dürfen nur durch qualifiziertes Personal durchgeführt werden. Nicht autorisierte Bedienung kann Verletzungen, tödliche Unfälle oder materielle Schäden zur Folge haben. Vor der Wartung innerer Teile ist sicherzustellen, dass die Zylinderleitung geschlossen, der elektrische Strom des Aufzugs abgeschaltet und der Druck im Ventil über das Notablassventil auf null reduziert worden ist.

**Ventile sind bereits fertig eingestellt und getestet.** Elektrische Funktion prüfen bevor Änderung am Ventil- oder Umrichter vorgenommen werden. Siehe Bedienungsanleitung des EV4 Umrichters zur Parametereinstellung.

#### 2.1 VENTILEINSTELLUNGEN

**S Überdruckventil:** 'Hineindrehen' bewirkt einen höheren, 'herausdrehen' einen niedrigeren Maximaldruck. Nach dem ,Herausdrehen', Notablass H für einen Augenblick öffnen.

Wichtig: Zur Prüfung des Überdruckventils den Absperrhahn bei laufender Pumpe <u>nicht</u> schlagartig schließen.

#### Einstellung AB

**Die Ventile sind bereits eingestellt und getestet.** Elektrische Funktion vor Einstellungsänderungen prüfen. Um zu prüfen, ob Magnetspule unter Spannung steht, 6-kant-Mutter entfernen und Spule leicht anheben – Anziehungskraft spürbar.

**Ausgangs-Einstellungen:** Einstellung **7 & 9** bündig mit Flansch. Eventuell sind noch bis zu zwei Umdrehungen in die eine oder andere Richtung notwendig. Einstellung **6 & 8** ganz hineingedreht, dann eineinhalb Umdrehungen herausgedreht. Eventuell ist noch eine Umdrehung in die eine oder andere Richtung notwendig.

6. Anfahrt abwärts: Mit beiden Spulen C und D unter Strom beschleunigt der Aufzug entsprechen der Drossel
6. 'Hinein' bewirkt eine weiche Anfahrt abwärts, 'heraus' eine härtere Anfahrt abwärts.

**7. Senkgeschwindigkeit:** Die höchste Senkgeschwindigkeit des Aufzugs ergibt sich entsprechend der Drossel **7**. 'Hinein' bewirkt eine langsamere, 'heraus' eine schnellere Senkgeschwindigkeit.

8. Abbremsung abwärts: Mit Spule C stromlos und Spule D noch unter Strom, wird der Aufzug entsprechend der Drosseleinstellung 8 abgebremst. 'Hinein' bewirkt eine weichere, 'heraus' eine härtere Abbremsung. Achtung: Nicht komplett schließen! Wird Einstellung 8 ganz geschlossen (im Uhrzeigersinn hereingedreht), kann der Aufzug unkontrolliert auf den Puffer fallen.

**9. Schleichfahrt abwärts:** Mit Spule **C** stromlos und **D** unter Strom (wie bei **8**), wird der Aufzug seine Fahrt mit Schleichfahrtgeschwindigkeit entsprechend Drossel **9** fortsetzen. 'Hinein' bewirkt eine langsamere, 'heraus' eine schnellere Schleichfahrtgeschwindigkeit.

Halt unten: Mit beiden Spulen C und D stromlos wird der Aufzug entsprechend der Drossel 8 anhalten. Weitere Einstellungen sind nicht nötig.

**KS Kolbensicherung:** Spulen **C** und **D** stromlos. Eingestellt wird die Kolbensicherung durch Lösen der Konterschraube und durch das Hinein- (höherer Druck) oder Herausdrehen (niedriger Druck) der Einstellschraube **K**. Mit **K** ganz hineingedreht, dann eine halbe Umdrehung zurück, soll der unbeladene Aufzug abwärts fahren, während Notablass **H** geöffnet ist. Bleibt der Aufzug noch stehen, so muss die Einstellschraube **K** herausgedreht werden bis der Aufzug gerade noch fährt, dann eine halbe Umdrehung herausdrehen, damit sich der Aufzug auch bei kaltem Öl absenken lässt.





Bild 5: Einstellungen und Explosionsansicht EV4

#### **Steuerelemente**

- **C** Magnetventil (Abbremsen ab)
- **D** Magnetventil (Halt ab)
- H Notablassventil
- S Überdruckventil

- U Umlaufkolben
- V Rückschlagventil
- X Senkkolben
- **Y** Schleichfahrtventil (ab)
- F Filter

#### Einstellungen AB

- 6 Anfahrtdrossel
- 7 Senkfahrteinstellung
- 8 Abbremsdrossel
- 9 Schleichfahrteinstellung





Bild 6: EV4 Ersatzteilliste und Auswahltabelle für die Einsatzgrößen



## 3. ELEKTRISCHER ANSCHLUSS



Alle Umrichter Anschlüsse sind entsprechend der Bedienungsanleitung des L1000V/L1000A und der Kurzanleitung des L1000H durch qualifiziertes Personal durchzuführen. Die Bedienungsanleitungen können unter http://www.blain.de/EV4/downloads heruntergeladen werden.

#### **3.1 ELEKTRISCHE VERDRAHTUNG**



Bild 7: Verdrahtung des Umrichters (15kW oder kleiner)





Bild 8: Verdrahtung des Umrichters (>15kW)

<1> Entfernen Sie die Steckbrückebeim Einbau einer Zwischenkreisdrossel. Die Modelle CIMR-L□2A0085 bis 0415 und 4A0045 bis 0216 haben eine integrierte Zwischenkreisdrossel.

<2> Der Umrichter verfügt über eine Stoppfunktion gemäß Stopp-Kategorie 0 (EN60204-1) und "Sicherer Halt" (IEC61800-5-2). Er erfüllt die Anforderungen von ISO13849-1, Kategorie 3 und IEC61508, SIL2. Bei Einsatz dieser Funktion ist nur ein Motorschütz erforderlich. Details siehe Eingangsfunktion "Sicherer Halt" auf Seite 49 der Yaskawa Kurzanleitung.

<3> Schließen Sie die Kontakte SP und SN nie kurz, da andernfalls der Frequenzumrichter beschädigt wird.

<4> Trennen Sie bei Verwendung der Eingänge "Sicherer Halt" die Drahtbrücke zwischen H1-HC und H2-HC ab.

Hinweis

- 1. Der Umrichter ist so ins System einzubauen, dass der Sicherheitskreis bei einem Fehler öffnet. Verwenden Sie hierfür die Klemme MA-MB-MC.
- Auch wenn kein Fehler vorliegt, ist es möglich, dass der Umrichter unter bestimmten Bedingungen nicht anläuft, z. B. wenn sich das Digitale Bedienteil im Programmier-Modus befindet. Verwenden Sie in solchen Situationen den Ausgang "Umrichter bereit" (Werkseinstellung an den Klemmen M5-M6), um den Betrieb zu deaktivieren.





Vor der Installation des EV4 Ventils ist sicherzustellen, dass die Motorleistung mit dem Anschlusswert des Umrichters zusammenpasst. Falls ein zu kleiner Umrichter ver-wendet wird, kann unter Umständen die Soll-Geschwindigkeit nicht erreicht werden.

#### **3.2 SIGNALEINGÄNGE (INPUT)**

Die Digitaleingänge des Umrichters können mittels einer internen oder einer externen Spannungsversorgung betrieben werden. Dazu ist S3 des DIP Schalters auf der Frontseite des Umrichters entsprechend *Bild 9* zu schalten. Der Umrichter ist im Auslieferungszustand auf den Sink–Mode wie *Bild 9* gezeigt eingestellt. Der Source-Mode ist in *Bild 10* dargestellt.

#### 3.3 EINGANGSSIGNAL MIT INTERNER SPANNUNGSVERSORGUNG (SINK-MODE)

Um den Inverter ein Fahrsignal zu geben, werden 24VDC vom Umrichter über die Schaltkontakte des Aufzugschaltschranks geschlossen/geöffnet.



Bild 9: Interne Spannungsversorgung

#### 3.4 EINGANGSIGNAL MIT EXTERNER SPANNUNGSVERSORGUNG (SOURCE-MODE)

Um dem Umrichter ein Fahrsignal zu geben, werden 24VDC Schaltkontakte von diesem über den Schaltschrank des Aufzuges geschlossen bzw. geöffnet und zum Umrichter zurückgeleitet.





#### 3.5 TEMPERATURSENSOR UND TEMPERATRMESSUMFORMER

Zur Messung der Öltemperatur im Tank kommt ein Temperatursensor (Pt100 Class B - DIN EN 60751) zusammen mit einem Messumformer zum Einsatz. Der Temperatursensor wird mittels eines Messumformers an den L1000H Umrichter angeschlossen. Die Anschlussbelegung des Messumformers kann aus *Bild 11* entnommen werden.





#### **3.6 ANSCHLUSS EXTERNER GERÄTE**

*Bild 12* zeigt wie der Umrichter und der Motor in Verbindung mit verschiedenen externen Geräten verbunden werden. Die detaillierten Installationsanweisungen sind in den Bedienungsanleitungen des L1000V/L1000A zu finden.

#### **3.7 EINGABEEINHEITEN**

Über die Eingabeeinheit des Umrichters (siehe *Bild 13*) lässt sich dieser ein- und ausschalten, Parameter anzeigen und ändern sowie Fehlermeldungen und Warnungen anzeigen.





Bild 12: Anschluss externer Geräte





Eingabeeinheit am Umrichter (bis 15kW)

| DIGITAL OPERATOR JVOP-160 ALM |
|-------------------------------|
|                               |
|                               |
|                               |
| F1 F2                         |
| ESC A CLO                     |
|                               |
|                               |
|                               |

\_\_\_\_\_\_

Fernbedienung

Für Umrichter bis 15kW sind optional eine Fernbedienung (JVOP-180) sowie ein 3m langes Anschlusskabel erhältlich. Dies macht die Bedienung einfacher, falls der Umrichter an einer ungünstigen Stelle installiert ist. Bei Umrichter über 15kW gehört die Fernbedienung mit zum Lieferumfang.

Die Parametereinstellungen können in der Fernbedienung gespeichert und somit zu einem anderen Umrichter übertragen werden. Siehe hierzu die Bedienungsanleitung des L1000V oder des L1000A.

#### Bild 13: Eingabeeinheiten

#### 3.7.1 Anzeigen der Eingabeeinheit

Die folgende Tabelle gibt eine Übersicht über die Menüstruktur der Bedieneinheiten. Detailliertere Informationen sind den L1000V oder L1000A Bedienungsanleitungen zu entnehmen.

| Text | LED | Text | LED | Text | LED    | Text | LED      |
|------|-----|------|-----|------|--------|------|----------|
| 0    | 0   | 9    | 9   | I    | 1      | R    | r        |
| 1    | 1   | Α    | 8   | J    | J      | S    | 5        |
| 2    | 2   | В    | 6   | K    | ٤      | Т    | ſ        |
| 3    | 3   | С    | E E | L    | Ĺ      | U    | U        |
| 4    | Ч   | D    | ď   | М    | ()<br> | v    | U        |
| 5    | 5   | Е    | ε   | N    | n      | W    | ບ່<br><> |
| 6    | 6   | F    | F   | 0    | 0      | Х    | none     |
| 7    | 7   | G    | 6   | Р    | ρ      | Y    | 9        |
| 8    | 8   | Н    | Н   | Q    | 9      | Z    | none     |

<l>> Zweistellige Anzeige

Bild 14: Digital-Anzeigen





Bild 15: Aufbau der Menüstruktur und Modi



### 3.7.2 Funktionen der Fernbedienung

### Die folgende Tabelle zeigt die Funktionen der Fernbedienung.

| Taste             | Bezeichnung                  | Funktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (F)<br>(72        | Funktionstaste<br>(F1, F2)   | Den Tasten F1 und F2 werden je nach dem jeweils angezeigten Menü unterschiedliche Funktionen zugeordnet. Der Name jeder Funktion erscheint in der unteren Hälfte des Displays.                                                                                                                                                                                                                                                                                                                                                                 |
| ESC               | Taste ESC                    | <ul> <li>Rückkehr zur vorherigen Anzeige.</li> <li>Bewegt den Cursor um eine Stelle nach links.</li> <li>Halten Sie diese Taste gedrückt, um zum Drehzahlsollwert zurückzukehren.</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |
| RESET             | RESET-Taste                  | <ul><li>Bewegt den Cursor nach rechts.</li><li>Setzt Umrichterfehler zurück.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <sup>●</sup> �RUN | RUN-Taste                    | <ul> <li>Startet den Frequenzumrichter im LOCAL-Betrieb.</li> <li>Die Run-LED: <ul> <li>leuchtet, wenn der Frequenzumrichter den Motor antreibt.</li> <li>blinkt während des Tieflaufs bis zum Stillstand ("Rampe bis zum Stillstand") oder wenn der Drehzahlsollwert 0 ist.</li> <li>blinkt in schneller Folge, wenn der Umrichter durch einen Digitaleingang deaktiviert ist, wenn er über einen Not-Stopp-Digitaleingang angehalten wurde oder wenn während des Einschaltens ein Aufwärts-/Abwärts-Befehl aktiv war.</li> </ul> </li> </ul> |
| ٨                 | Richtungstaste nach oben     | Blättert nach oben zur Anzeige des vorigen Eintrags, wählt Parameternummern und erhöht<br>Einstellwerte.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V                 | Richtungstaste nach<br>unten | Blättert nach unten zur Anzeige des nächsten Eintrags, wählt Parameternummern und senkt<br>Einstellwerte.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| STOP              | STOP-Taste                   | Stoppt den Betrieb des Frequenzumrichters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ENTER             | ENTER-Taste                  | <ul><li>Bestätigt Parameterwerte und Einstellungen.</li><li>Wählt einen Menüeintrag, um zwischen den Menüpunkten un</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | LO/RE-<br>Auswahltaste       | Schaltet die Umrichtersteuerung zwischen der Bedienung über das Bedienteil (LOCAL) und über die Steuerklemmen (REMOTE) um. Die LED leuchtet, wenn der Frequenzumrichter in die LOCAL-Betriebsart geschaltet ist (Bedienung über Tastatur).                                                                                                                                                                                                                                                                                                     |
| ALM               | ALM-LED-<br>Anzeigelampe     | <ul> <li>An: Wenn am Frequenzumrichter ein Fehler anliegt.</li> <li>Blinkt:</li> <li>Wenn ein Alarm auftritt.</li> <li>Wenn ein OPE-Fehler erkannt wird.</li> <li>Wenn beim Autotuning ein Alarm oder ein Fehler auftritt.</li> </ul>                                                                                                                                                                                                                                                                                                          |



#### Menüstruktur des Bedienteils



<1> Frequenzumrichter kann den Motor nicht steuern.

- <2> Blinkende Zeichen werden als Oangezeigt.
- <3> In diesem Handbuch werden die Zeichen als X dargestellt. Das LCD-Bedienteil zeigt die tatsächlichen Werte an.
- <4> Der Drehzahlsollwert wird nach dem Startbildschirm, der den Produktnamen zeigt, angezeigt.
- <5> Je nach Umrichtermodell werden im Display unterschiedliche Informationen angezeigt.



#### Ändern der Parameter

Das folgende Beispiel zeigt die Änderung des Parameters **C1-02** (Zeit der Abbremsung) von **1.50** Sekunden auf **2.50** Sekunden.



Mehrmals ESC drücken bis das Startmenü erscheint



## 4. INSTALLATION

Das folgende Flussdiagramm zeigt den Ablauf der ersten Inbetriebnahme des EV4 Umrichters. In den darauffolgenden Abschnitten werden die einzelnen Punkte beschrieben.



Bild 16: Erste Inbetriebnahme

#### **4.1 VENTIL INSTALLATION**

Stellen Sie sicher, dass die Pumpen-, Zylinder- und Tankverbindungen des Ventils ordnungsgemäß und luftdicht angeschlossen sind. Siehe Abschnitt 2 dieser Bedienungsanleitung.



Die Funktionen des EV4 Ventils wurden werksseitig überprüft. Das Überdruckventil und die Einstellungen der Senkfahrt wurden entsprechend der Kundenbestellung eingestellt. Wurden keine Spezifikationen angegeben, ist das Überdruckventil auf einen Druck von 65 bar eingestellt.

#### 4.2 ELEKTRISCHE VERDRAHTUNG

Siehe Kapitel 3 "Elektrischer Anschluss" und Bedienungsanleitung L1000V/L1000A.

#### 4.3 EINSCHALTEN

Siehe Kurzanleitung und Bedienungsanleitung L1000V.

#### 4.4 INITIALISIERUNG DES UMRICHTERS

Eine Initialisierung ist normalerweise nicht erforderlich. Falls doch, A1-03 auf 2220 setzen und die Initialisierung mit dem Motor Tuning beginnen.

#### 4.5 ÜBERPRÜFUNG DER MOTORDREHRICHTUNG

Der Motor muss die richtige Drehrichtung haben. Diese lässt sich anhand des Pfeils auf der Pumpe überprüfen.



Die Motordrehrichtung kann mittels des Parameters b1-14 geändert werden. Dies kann während des Motor Tunings überprüft und gegeben falls geändert werden (siehe Kapitel 4.6).

#### 4.6 ANPASSUNG AN DEN MOTOR (TUNING)

Diese Anleitung gibt nur eine kurzen Überblick über die Anpassungen des Motors. Weitergehende Informationen finden sich in der Kurzanleitung des L1000H Umrichters oder der Bedienungsanleitung des Yaskawa L1000V/L1000A Umrichters.

#### 4.7 AUTO-TUNING

Nach der Installation des EV4 Ventils auf dem Aggregat und der Verdrahtung erfolgt das Auto-Tuning. Dabei werden die elektrischen Daten des Motors ermittelt.

Es gibt zwei Arten des Auto-Tunings, mit laufendem oder stehendem Motor. Auto-Tuning mit laufendem Motor sollte bevorzugt verwendet werden, da diese Methode die genaueren Daten ermittelt. Hierbei muss sichergestellt sein, dass der Motor ohne Last laufen kann. Das Auto-Tuning bei stehendem Motor ist für den Fall gedacht, bei dem man den Motor nur unter Last laufen lassen kann (z.B. der Tank ist bereits gefüllt und/oder die Pumpe nicht vom Motor entfernt werden kann.

| Tuning Modus                       | Parameter | Beschreibung                                                                                                           |
|------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| Auto-Tuning bei                    | T1 01_0   | Der Motor muss in der Lage sein während des                                                                            |
| laufendem Motor                    | 11-01=0   | Tunings ohne Last laufen zu können.                                                                                    |
| Auto-Tuning bei<br>stehendem Motor | T1-01=1   | Methode falls das Kabel zum Motor sehr lang ist, getauscht wurde oder man den Motor nur unter Last laufen lassen kann. |

| Wenn man denselben Motor-Typ in verschiedenen Installationen verwendet, kann<br>man das Auto-Tuning bei einem Motor (ohne Last) durchführen und die ermittelten<br>Motorparameter (E1-xx und E2-xx) von Hand bei den anderen Installationen eingeben<br>(siehe 4.16). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Die Motorschütze sollen während des Auto-Tuning Vorgangs nah am Motor sein. Um<br>den Auto-Tuning Vorgang abzubrechen ist die STOP Taste an dem Eingabefeld zu<br>drücken.                                                                                            |
|                                                                                                                                                                                                                                                                       |

#### 4.8 BENÖTIGTE MOTORDATEN

Während des Auto-Tuning Vorgangs sind Motordaten vom Bediener einzugeben. Daher sollten die Informationen welche sich auf dem Motortypenschild befindet vorliegen (Leistungsaufnahme, Nennspannung, Nennstrom, Drehzahl, Pol-Anzahl usw.).

Zum Erreichen der besten Motorperformance sollte sichergestellt sein, dass die Eingangsspannung des Umrichters dieselbe Höhe hat oder zumindest annähernd dieselbe ist, wie die der Motornennspannung.



#### 4.9 ÜBERBLICK AUTO-TUNING MIT LAUFENDEM MOTOR



Der Yaskawa L1000H Umrichter arbeitet im Auslieferzustand mit der Open Loop Vector (OLV) Regelung (A1-02=2) und dem Standard-Modus für hohe Beanspruchung (HD - Heavy Duty Modus).



Bild 17: Flussdiagramm Motor Tuning



Für die beste Motorperformance sollte das Auto-Tuning mit laufendem Motor ohne Last durchgeführt werden. Der Ablauf ist in Bild 16 mittels eines Flussdiagramms dargestellt.

Niemals den Motor während des Auto-Tunings berühren. Auch wenn der Motor stillsteht liegt am Motor Spannung an. Das Auto-Tuning ist beendet wenn auf der Eingabeeinheit "END" erscheint. Der Motor darf erst nach Erscheinen der "END" Meldung und nach Stillstand des Motors berührt werden.



beschädigen kann.

Ein Unterölmotor darf nicht ohne Pumpe betrieben werden. Das könnte den Motor beschädigen, da üblicher Weise der Motor an der Frontseite kein Lager besitzt. Die Pumpe darf nie im trockenen Zustand betrieben werden, da dies die Pumpe

Falls der Motor und die Pumpe mit dem Aufzugssystem verbunden bleibt, sollte die<br/>Last unter 30% der Motornennleistung liegen. Sollte die Last höher sein werden die<br/>Motorparameter falsch ermittelt, was zu einem unbefriedigenden Betrieb des<br/>Motors/Umrichters führen würde.Die Anschlüsse HC, H1 und H2 müssen gebrückt sein, sonst startet der Motor für das<br/>Autotuning nicht. Falls die Funktion "Sicherer Halt" nicht genutzt wird, müssen die<br/>Eingänge HC, H1 und H2 ebenfalls gebrückt sein.Warnungen ENDE1, END2 oder END3 am Ende des Tunings können ignoriert werden.

#### 4.10 AUTO-TUNING BEI BEREITS EXISTIERENDEN AGGREGATEN (UNTERÖLMOTOR+PUMPE)

Nachdem das EV4 Ventil auf das Aggregat montiert und der Tank mit Öl gefüllt wurde, kann das Ventil für das Auto-Tuning für eine Last kleiner 30% der Nennleistung vorbereitet werden.



#### Bild 18: Umbau des Ventils für Auto-Tuning bei bestehenden Aggregaten

- (a) Kugelhahns zum Zylinder (bzw. Heber) schließen
- (b) Ventil drucklos machen (Betätigen des Notablasses)
- (c) Umrichters L1000H ausschalten oder sicherstellen, dass dieser kein Start-Signal erfolgt
- (d) Umlaufflansch entfernen
- (e) Umlaufkolben und die zwei Federn entnehmen
- (f) Umlaufflansch wieder montieren
- (g) Auto-Tuning wie in der Bedienungsanleitung des Yaskawa L1000H QSG Umrichters durchführen
- (h) Nachdem das Auto-Tuning erfolgreich beendet wurde, ist der Umlaufkolben und die Federn wieder in das Ventil einzusetzen.
- (i) Kugelhahn wieder vorsichtiges öffnen
- (j) Motor-Schlupf Parameter (E2-02) überprüfen, (siehe Kapitel 4.14)



#### 4.11 AUTO TUNING MIT LAUFENDEM MOTOR

- 1) Motordaten vom Typenschild ablesen (siehe Kapitel **4.8**).
- 2) Zum Auto Tuning Mode wechseln
- 3) Umrichter auf Auto-Tuning mit laufendem Motor einstellen. T1-01=0
- 4) Eingabe der Motordaten
  - T1-02, Motor Leistung in kW (z.B. 14,7kW)
  - T1-03, Motor Nennspannung (z.B. 400V)
  - T1-04, Motor Nennstrom (z.B. 16A)
  - T1-05, Motor Netzfrequenz (z.B. 50Hz)
  - T1-06, Anzahl der Motorpole (z.B. 2)
  - T1-07, Motor Nenndrehzahl (z.B. 2780 1/min)
- 5) Starten des Auto-Tuning Vorgangs wenn der Umrichter dies durch blinken des **RUN** Tasters angezeigt. Das Auto-Tuning wird selbstständig vom Umrichter drchgeführt.
- 6) Falls das Auto-Tuning mit den Meldungen END1, END2 oder END3 beendet wird, bedeutet dies, dass ein oder mehrere Motoreinstellungen außerhalb des üblichen Bereichs liegen. Die Meldungen können zu diesem Zeitpunkt ignoriert werden.



Falls während des Auto-Tunings ein Fehler auftritt, wird dies an der Eingabeeinheit angezeigt und der Motor gestoppt. Überprüfen Sie dann die Fehlermeldungen anhand der Bedienungsanleitungen des L1000V/L1000A.



Falls eine Motor-/Pumpeneinheit unter Öl läuft, ist auf eine richtige Drehrichtung des Motors zu achten. Falls kein Öl zurück in den Tank gepumpt wird und/oder es eine extreme Geräuschentwicklung und Vibrationen geben sollte, ist das Auto-Tuning abzubrechen und die Drehrichtung mittels des Parameters b1-14 umzukehren. Um das Auto-Tuning abzubrechen "STOP" drücken.

#### 4.12 BEISPIEL AUTO-TUNING

Das folgende Beispiel zeigt wie ein Auto-Tuning mit laufendem Motor durchgeführt wird.

#### Einstellen der Auto-Tuning Art mittels der Fernbedienung





#### Eingabe der Motordaten entsprechend dem Motortypenschild

|    | Schritt                                                                                                                                                                                                                              |          | Anzeige |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| 1. | Drücke Mum auf den Parameter T1-02 der Motorleistung zuzugreifen                                                                                                                                                                     | t        | r 1-02  |
| 2. | Drücke ENTER um den aktuellen Wert zu sehen                                                                                                                                                                                          | +        | 000.40  |
| 3. | Drücke RESET um die einzustellende Stelle zu ändern                                                                                                                                                                                  | <b>→</b> | 000.40  |
| 4. | Drücke Mum den Wert zu ändern                                                                                                                                                                                                        | †        | 000.20  |
| 5. | Drücke enter um die Einstellung zu speichern                                                                                                                                                                                         | 1        | End     |
| 6. | Die Anzeige wechselt automatisch zur Anzeige von Schritt 1                                                                                                                                                                           | <b>→</b> | F 1-02  |
| 7. | Wiederholen Sie Schritte 1 bis 5, um die folgenden Parameter einzustellen:<br>- T1-03, Motor Nennspannung<br>- T1-04, Motor Nennstrom<br>- T1-05, Motor Netzfrequenz<br>- T1-06, Anzahl der Motorpole<br>- T1-07, Motor Nenndrehzahl | <b>→</b> |         |

#### 4.13 AUTO-TUNING BEI STEHENDEM MOTOR

Siehe Bedienungsanleitung des Yaskawa L1000V/L1000A Umrichters.

#### 4.14 ÜBERPRÜFEN DES MOTORSCHLUPFES (E2-02)

Nachdem das Auto-Tuning erfolgreich beendet wurde, ist der Motorschlupf Parameter **E2-02** zu überprüfen, Weicht dieser Wert gegenüber dem rechnerischen (siehe Berechnungsformel unten) mehr als 20% ab, ist nicht der vom Auto-Tuning ermittelte, sondern der berechnete zu verwenden. Dazu den Parameter E2-02 von Hand eingeben. Der tatsächliche Motorschlupf berechnet sich wie folgt:

$$Motorschlupf = Motor Nennfrequenz - \frac{Motor Nenngeschwindigkeit * Anzahl der Motorpole}{120}$$

Beispiel: Bei einem 50Hz, 2 polig und 2780min<sup>-1</sup> Motor, errechnet sich der Motorschlupf wie folgt:

$$Motorschlupf = 50 - \frac{2780 * 2}{120} = 3.67Hz$$

#### 4.15 ÜBERPRÜFEN DES LEERLAUFSTROMS

Nach dem Auto-Tuning muss der angezeigten Parameter E2-03 für Leerlaufstrom überprüft und falls er mit folgenden Bedingungen nicht übereinstimmt, geändert werden:

#### Für Unteröl-Motoren:

Leerlaufstrom = 0,5 bis 0,6 X Nominalmotorstrom, was bedeutet: E2-03 = 0,5 bis 0,65 X E2-01.

#### Für nicht-Unteröl-Motoren:

Leerlaufstrom = 0,3 bis 0,4 X Nominalmotorstrom, was bedeutet: E2-03 = 0,3 bis 0,4 X E2-01.

#### 4.16 MOTORPARAMETER FÜR EINIGE BEKANNTE MOTOREN

Für einige bekannte Motoren sind die Parameter E1-XX und E2-XX im Anhang 1 aufgelistet. Hat der Betreiber einen Motor aus dieser Liste, kann er die Parameter direkt von dort nehmen und in den Umrichter eingeben. Ein Auto-Tuning ist in diesem Fall nicht notwendig. Für den Zugriff auf die vollständigen Motorparameter ist von "Customer" auf "Advance" (A1-01=2) zu wechseln. Siehe Absatz 10.1 . Nach erfolgter Eingabe der Motorparameter (E1-xx & E2-xx) ist A1-01 wieder auf 3 zu setzen.



#### 4.17 GRUNDPARAMETER

Nach dem die Versorgungsspannung am Yaskawa L1000H Umrichter angelegt wurde, sind alle hydraulischen Funktionen automatisch aktiviert. Der Umrichter regelt die Motordrehzahl so, dass eine konstante Fahrgeschwindigkeit bei hoher Fahrqualität, unabhängig der Pumpenleistung bei Beladung und Öltemperatur, gewährleistet ist.

Der Umrichter benötigt bestimmte Parameter (Frequenzen bei den Geschwindigkeiten, Beladungs- und Temperaturreferenzen sowie Kompensationswerte), um diese guten Fahreigenschaften zu erhalten. Die Umrichter-Software leitet diese Werte anhand von Öl-, Aufzugs- und Pumpendaten (P1-xx Eingabeparameter) ab, welche leicht vom Aufzugshersteller und durch eine Lernfahrt zu bekommen sind. Alternativ können die notwendigen Parameter zeitintensiv auch von Hand eingegeben werden.



Die erforderlichen Pumpendaten können vom Pumpenhersteller bezogen werden. Alternativ kann der Blain EV4 Rechner (<u>www.blain.de/calc</u>) den Anwender unterstützen, um diese Daten einfach mittels Eingabe der Aufzugsdaten zu erhalten.

#### 4.18 PARAMETERÜBERSICHT

Zum Einstellen des Umrichters werden die Parameter-Listen A bis P benötigt. Ausgiebige Informationen der Umrichter-Parameter können der Bedienungsanleitungen des L1000V/L1000A Umrichters entnommen werden. Der Anwender wird hauptsächlich die P-Parameter nutzen, welche extra für hydraulische Aufzüge entwickelt wurden. Sowie die T- und C-Parameter, die hauptsächlich für Motor-Tuning und zum Einstellen der Sollkurve benutzt werden. In der Beschreibung werden noch andere Parameter für spezielle Einstellungen erwähnt. Einen Überblick der P-Parameter ist in **Tabelle 3** zu finden.

| Gruppe | Parametergruppe<br>(Anzeige im Display) | Beschreibung                                                        |
|--------|-----------------------------------------|---------------------------------------------------------------------|
| Р      | Hydraulikpumpe                          | Zum Einstellen der Pumpenfunktionen                                 |
| P1-##  | Eingabe Lernfkt.                        | Eingabewerte für die Lernfunktion:<br>Öl-, Pumpen- und Aufzugsdaten |
| P2-##  | Abwärtsrichtung                         | Verbesserte Fahrqualität in Senkrichtung                            |
| P3-##  | Sollwerte                               | Ausgabewerte der Lernfunktion: Frequenz & Lastreferenzen            |
| P4-##  | Aufzugsinitial.                         | Grundeinstellung / Auswahl der Lernfunktion                         |
| P5-##  | Grenzwerte                              | Grenzen der Kompensation, Energiesparmodus usw.                     |
| P6-##  | Freq Haltefunktion                      | Haltefunktion beim Start und Stopp                                  |
| P7-##  | Einfahr-Steuerg.                        | Aufnahme der Schleichfahrtfunktion                                  |
| P8-##  | Spez. Abstimmung                        | Zusätzliches Tuning                                                 |

Tabelle 3: Überblick der P-Parameter für Hydraulische Aufzüge

#### 4.19 PARAMETER DER SOLLKURVE

Eine Sollkurve besteht aus Rampen (C1-xx Parameter) und S-Kurven (C2-xx Parameter) wie unten gezeigt. Um bessere Fahreigenschaften zu erreichen sind spezielle Start- und Stopp-Haltezeiten in der Sollkurve enthalten. Die Parameter der Sollkurve, die Wertebereiche und die Grundeinstellungen sind in Tabelle 4 zu finden. Die voreingestellten Werte können vom Anwender unverändert übernommen werden.

| Parameter | Anzeige im Display<br>Beschreibung                                  | Bereich          | Voreingestellter<br>Wert |
|-----------|---------------------------------------------------------------------|------------------|--------------------------|
| C1-01     | C1-01     Rampe – Beschleunigung       C1-02     Rampe – Abbremsung |                  | 3,5s                     |
| C1-02     |                                                                     |                  | 2,6s                     |
| C1-03     | Rampe – Anfahrtsrampe vor Beginn der Fahrt                          | 0,0 DIS 0000,0 S | 2,0s                     |
| C1-04     | Rampe – Weichhalt                                                   |                  | 1,6s                     |
| C2-01     | S-Kurvencharakteristik bei Beschleunigungsbeginn                    | 0.0 his 10.0s    | 2,0s                     |
| C2-02     | 2-02 S- Kurvencharakteristik bei Beschleunigungsende                |                  | 0,7s                     |



| Parameter | Anzeige im Display<br>Beschreibung                   | Bereich            | Voreingestellter<br>Wert |
|-----------|------------------------------------------------------|--------------------|--------------------------|
| C2-03     | S- Kurvencharakteristik bei Abbremsungsbeginn        |                    | 0,3s                     |
| C2-04     | S- Kurvencharakteristik bei Abbremsungsende          |                    | 1,6s                     |
| P3-01     | Frequenz bei Nenngeschwindigkeit – unbeladen         | 0,00 bis Parameter | 42,87Hz                  |
| P3-02     | Frequenz bei Zwischengeschwindigkeit- unbeladen      | E1-06 Hz           | 32,75Hz                  |
| P3-03     | Frequenz bei Inspektionsgeschwindigkeit- unbeladen   | 0,00 bis 50,00Hz   | 17,59Hz                  |
| P3-04     | Frequenz bei Schleichfahrtgeschwindigkeit- unbeladen | 0,00 bis 50,00Hz   | 5,45Hz                   |
| P3-07     | Pumpen-Leckverlust – unbeladen                       | 0,00 bis 25,00Hz   | 2,43Hz                   |
| P6-01     | Frequenz-Offset während der Haltezeit                | 0,00 bis 20,00Hz   | 2,00Hz                   |
| P6-02     | Haltezeit 1                                          | 0.00 bio 20.00o    | 2,00s                    |
| P6-03     | Haltezeit 2 (Nachholung)                             | 0,00 bis 20,005    | 1,00s                    |
| P6-05     | Faktor der Haltezeit bei Nachholung                  | 0.000 bio 2.000    | 1,200                    |
| P6-06     | Faktor der Haltezeit Leckverlust                     | 0,000 bis 3,000    | 1,000                    |
| P6-07     | Haltezeit beim Anhalten                              | 0,00 bis 5,00s     | 0,30s                    |
| E1-04     | Maximale Ausgangsfrequenz                            | 0 bis 400          | 60 Hz                    |

Tabelle 4: Sollkurvenparameter, Wertebereich und Grundeinstellung



Bild 19: Sollwert-Parameter



#### 4.20 WIRKSAME RAMPENZEITEN

Die Rampenzeiten sind auf Basis der maximalen Ausgangsfrequenz **(E1-04)** gerechnet. Das bedeutet, dass der Umrichter die Geschwindigkeit E1-04 in der vorgegebenen Zeit für die C1-xx Rampe erreicht. Dies ist dem Bild 19 zu entnehmen.

Beispiel: die maximale Ausgangsfrequenz ist 60Hz (E1-04), die Frequenz des Leckverlust ist 3Hz (P3-07) und C1-03 wurde auf 2s gesetzt, dann ergibt sich für die effektive Rampenzeit (C1-03) ein Wert von 0,1s (siehe folgendes Rechenbeispiel).



#### Bild 20: Effektive Rampenzeit

Effektive Rampenzeit (C1-03<sub>eff</sub>)[s] =  $\frac{\text{vorgegebene Rampenzeit (C1-03) * Frequenzdifferenz}}{\text{E1-04}}$ 

Effektive Rampenzeit (C1-03<sub>eff</sub>)[s] = 
$$\frac{2 * (3 - 0)}{60} = 0.1s$$

Die Eingabe der Rampenwerte **C1-01** und **C1-02** in Sekunden erfolgt unter Berücksichtigung der effektiven Rampenzeiten.



## 5. LERNFAHRT-FUNKTION

Bei der Lernfahrt-Funktion ermittelt der Umrichter selbsttätig die Werte, welche zur Regelung der Aufzugsgeschwindigkeiten notwendig sind. Diese Funktion wird in drei Phasen unterteilt.

| Lernfahrt Phase     | Parameter | Beschreibung                                                    |
|---------------------|-----------|-----------------------------------------------------------------|
| Grundhorochnungon   | P4 01-1   | Basierend auf Pumpen-, Öl- und Aufzugsdaten erzeugt der         |
| Grundberechnungen   | P4-01=1   | Umrichter z.B. die Frequenzreferenzen                           |
| Lorafabrt unbaladan | D4 01_2   | Ermittelt die restlichen Betriebsdaten durch eine Lernfahrt bei |
|                     | P4-01=2   | unbeladener Kabine                                              |
| Deremeter engighern | D4 01 2   | Speichert die eingegebenen Daten und ermittelten Parameter im   |
| Farameter speichern | P4-01=3   | Speicher des Umrichters.                                        |

Während dem normalen Betrieb ist P4-01 gleich 0.

*Bild 22* beschreibt die Vorgehensweise zum Einstellen der Ausgangswerte und beschreibt die notwendige Lernfahrt.

#### 5.1 SCHRITT 1: ÜBERPRÜFEN DER SOLLKURVE

Es ist sicherzustellen, dass der Abstand zwischen dem Abbremsschalter und dem Stoppschalter so gewählt ist, dass der Möglichkeit Aufzug die hat die Schleichgeschwindigkeit zu erreichen (siehe Bild 20(a)). Wie in Bild 20(b) gezeigt, erreicht Aufzug mit zu kurzem Schalterabstand und/oder falsch eingestellten Abbremsparameter (C1-02, C2-03 und C2-04) den Stoppschalter mit einer Geschwindigkeit welche höher ist als die Schleichgeschwindigkeit. Für eine korrekte Einstellung können die



entsprechenden Parameter aus der **Tabelle 5** entnommen werden. Abhängig von der Geschwindigkeit am Stoppschalter kann der Umrichter den Fehler SEQF anzeigen und den Aufzug ausschalten. Nach dem Drücken des Reset-Schalters kann der Umrichter dann wieder gestartet werden.

| * | Beim Auftreten der SEQF Fehlermeldung ist der Schalterabstand zu vergrößern<br>und/oder die Parameter der Abbremskurve zu verringern. Um die SEQF<br>Fehlermeldung rückzusetzen, ist der Reset Taster zu drücken. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Die Funktion SEQF ist nur bei Nenn- und Zwischengeschwindigkeit aktiv.<br>Um die Anzeige der Fehlermeldung SEQF zu unterdrücken:                                                                                  |
|   | Bei Umrichtermodell CIMR-LC4V die Anschlüsse S2 und SC bücken, sowie H1-02 auf 14 setzen.                                                                                                                         |
|   | Bei Umrichtermodell CIMR-LC4A die Anschlüsse S7 und SN brücken, sowie H1-07 auf 14 setzen.                                                                                                                        |

Die **Abbremskurve** (C1-02, C2-03 und C2-04) muss entsprechend der Nenngeschwindigkeit geändert werden, um eine weiche Abbremsung und einen Softstopp zu erreichen. Es wird geraten die Parameterwerte und Schalterabstände entsprechend der folgenden Tabelle zu verwenden.









| Aufzugsgeschwindigkeit<br>[m/s] | C1-02 | C2-03 | C2-04 | Schalterabstand<br>[cm] |
|---------------------------------|-------|-------|-------|-------------------------|
| 0,3                             | 1,8   | 0,3   | 1,3   | 50                      |
| 0,4                             | 2,0   | 0,3   | 1,3   | 65                      |
| 0,5                             | 2,2   | 0,3   | 1,4   | 85                      |
| 0,6                             | 2,4   | 0,3   | 1,4   | 105                     |
| 0,7                             | 2,6   | 0,4   | 1,5   | 130                     |
| 0,8                             | 2,7   | 0,4   | 1,6   | 150                     |
| 0,9                             | 2,8   | 0,4   | 1,6   | 170                     |
| 1,0                             | 2,9   | 0,4   | 1,7   | 190                     |

Tabelle 5: Empfohlene Parameter für die Sollkurve der Abbremsung und Schalterabstände

#### 5.2 SCHRITT 2: EINGABE DER P1-XX PARAMETER; ÖL-, PUMPEN- UND AUFZUGSDATEN

Der L1000H Umrichter berechnet selbsttätig die vorgegebenen Aufzugsgeschwindigkeiten (Nenn-, Zwischen, Inspektions- und Schleichfahrt) durch Drehzahländerungen entsprechend der Öl-, Pumpen- und Aufzugsdaten (P1-xx Parameter), welche vom Anwender einzugeben sind. Diese Parameter sind der **Tabelle 6** zu entnehmen. Überprüfe U7-02 (Öltemperatur) im "Monitomenü", ehe die P1-xx Parameter eingegeben werden.



Abgesehen von den Pumpenparametern P1-11 bis P1-15, können alle anderen anhand der Aufzugsdaten und dem L1000H Umrichter ermittelt werden. Um die Pumpenparameter zu erhalten kann der Blain EV4 Rechner von www.blain.de/calc verwendet werden. Alternativ kann auch ein Smartphone App vom Google Play App Store genutzt werden. (App Name: Blain Hydraulics Calculator)

| Parameter | Anzeige im Display<br>Beschreibung                               | Parameter                                                                           | rwerte                                     |                                            | Bereich                | Vorein-<br>gestellter<br>Wert |
|-----------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------|-------------------------------|
| P1-01     | <i>Oel ISO VG-Nr.</i><br>Hydraulik Öl ISO VG<br>Nummer           | 0: manuelle Eingabe<br>1: ISO VG 22<br>2: ISO VG 32<br>3: ISO VG 46<br>4: ISO VG 68 |                                            | 0 bis 4                                    | 3                      |                               |
| P1-02     | <i>Temp.</i> @100cSt<br>Temperatur bei 100 cSt                   | Vorausgev                                                                           | wählt durch                                | n P1-01:                                   | 0 bis 100°C            | 25°C                          |
| P1-03     | <i>Temp. @25</i> cSt<br>Temperatur bei 25 cSt                    | P1-01<br>0<br>1<br>2<br>3<br>4                                                      | P1-02<br>/°C<br>25<br>11<br>18<br>25<br>33 | P1-03<br>/°C<br>55<br>37<br>46<br>55<br>64 | 0 bis 100°C            | 55°C                          |
| P1-04     | Durchm.Kolbenzy<br>Kolbendurchmesser                             | manuelle Dateneingabe                                                               |                                            | 10 bis<br>1000mm                           | 70mm                   |                               |
| P1-05     | <i>Anzahl Kolbenzyl</i><br>Anzahl der Zylinder                   | manuelle I                                                                          | Dateneinga                                 | abe                                        | 1 bis 10               | 1                             |
| P1-06     | Aufhängung<br>Übersetzungsverhältnis                             | manuelle                                                                            | Dateneinga                                 | abe                                        | 1 bis 10               | 2                             |
| P1-07     | <i>Stat. Druck leer</i><br>Statischer Druck bei leerer<br>Kabine | manuelle Dateneingabe                                                               |                                            | 1 bis 100bar                               | 20bar                  |                               |
| P1-08     | <i>Nutzlast</i><br>Tragkraft                                     | manuelle Dateneingabe                                                               |                                            | 1 bis 65000kg                              | 300kg                  |                               |
| P1-09     | <i>Druckerhöhung</i><br>Dyn. Druckerhöhung                       | manuelle Dateneingabe                                                               |                                            | 1 bis 30bar                                | 5bar                   |                               |
| P1-11     | Vol@100cStMaxDr<br>Durchfluss bei 100cSt &<br>maximalen Druck    | Pumpenda<br>Rechner, i                                                              | aten, vom I<br>manuell eir                 | Blain<br>ngeben                            | 2,0 bis 600,0<br>I/min | 102,5<br>I/min                |



| P1-12 | Vol@25cSt_MaxDr<br>Durchfluss bei 25cSt &<br>maximalen Druck   | Pumpendaten, vom Blain<br>Rechner, manuell eingeben | 2,0 bis 600.0<br>I/min             | 93,9<br>I/min             |
|-------|----------------------------------------------------------------|-----------------------------------------------------|------------------------------------|---------------------------|
| P1-13 | Nenndrehz Pumpe<br>Nenndrehzahl der Pumpe                      | Pumpendaten, vom Blain<br>Rechner, manuell eingeben | 1000 bis 4000<br>min <sup>-1</sup> | 2750<br>min <sup>-1</sup> |
| P1-14 | Vol@100cSt leer Dr<br>Durchfluss bei leerer<br>Kabine & 100cSt | Pumpendaten, vom Blain<br>Rechner, manuell eingeben | 2,0 bis 600.0<br>I/min             | 104,6<br>I/min            |
| P1-15 | Vol@100cSt- 1 bar<br>Durchfluss bei 1 bar Druck<br>& 100cSt    | Pumpendaten, vom Blain<br>Rechner, manuell eingeben | 2,0 bis 600.0<br>I/min             | 111,3<br>I/min            |
| P1-16 | Nenngeschwindigk<br>Nenngeschwindigkeit                        | manuelle Dateneingabe                               | 0,000 bis<br>1,200 m/s             | 0,80 m/s                  |
| P1-17 | Zwischengeschw<br>Zwischengeschwindigkeit                      | manuelle Dateneingabe                               | 0,000 bis<br>1,200 m/s             | 0,60 m/s                  |
| P1-18 | Inspektionsgeschw<br>Inspektionsgeschwindigkeit                | manuelle Dateneingabe                               | 0,000 bis<br>0,300 m/s             | 0,30 m/s                  |
| P1-19 | Einfahrgeschwind<br>Schleichfahrtgeschw.                       | manuelle Dateneingabe                               | 0,000 bis<br>0,1500 m/s            | 0,06 m/s                  |

Tabelle 6: P1-xx Parameter: Öl, Pumpen- und Aufzugsdaten

#### 5.3 PUMPENDATEN VOM BLAIN EV4 BERECHNUNGSPROGRAMM (www.blain.de/calc)

Der Blain EV4 Rechner besteht aus drei Tabellen. In den ersten zwei werden die benötigten P1-xx Werte eingegeben, während die ermittelten Pumpendaten (Parameter) aus Tabelle 3 zu entnehmen sind.

| 🔶 🎯 www.blain.                 | .de/calc/                                       |                                 |                                              |             |                                  |
|--------------------------------|-------------------------------------------------|---------------------------------|----------------------------------------------|-------------|----------------------------------|
| Most Visited 🥹 Getting Started |                                                 | Anzeigen oder Ausbler           | nden al                                      | le Tabellen |                                  |
| Blain Hyd                      | raulics EV                                      | 4 Rechner                       | Tabelle 1<br>Öl & Motor Antriebse            | inheit      | Tabelle 3<br>Inverter-Werte      |
| Anzeigen o                     | der Ausblender                                  | n alle Tabellen                 | Aufzugs Daten                                |             |                                  |
| Öl & Motor                     | Tabelle 2<br>Antriebseinhe                      | Tabelle 3<br>eit Inverter-Werte | Zylinderdurchmesser[mm] P1-04                | 110         | Ist Ihr Pumpenleistung: 177.9    |
|                                |                                                 |                                 | Anzahl der Zylinder P1-05                    | 1           | WENN NICHT, wählen Sie bitte     |
| Olauswah                       |                                                 |                                 | Übersetzung P1-06                            | 2           | Ihre Pumpe:                      |
| Ölsorte                        | Temperatur<br>bei100 cSt                        | Temperatur<br>bei 25 cSt        | Leerer Fahrkorb, Druck [bar]<br>P1-07        | 18          | Deceleration parameters          |
| ISO VG22                       | 11°C                                            | 37°C                            | Nutzlast [kg] P1-08                          | 1000        | Start Abbremskurve C2-03 0.3 sec |
| ISO VG32                       | 18 °C                                           | 46 °C                           | Dynamischer Druckanstieg P1-09               | 3           | End Abbremskurve C2-04 1.4 sec   |
| ISO VG46                       | 25 °C                                           | 54 °C                           | Nenngeschwindigkeit [m/s] P1-16              | 0.6         | Max. Frequenz E1-04 60 Hz        |
| ISO VG68                       | 32 °C                                           | 63 °C                           | Zwischengeschwindigkeit [m/s]                | 0.35        | Bremsrampe C1-02 1.42 sec        |
| Andere                         | 0                                               | 0                               | Prüfgeschwindigkeit [m/s] P1-18              | 0.3         |                                  |
|                                | Motorausv                                       | vahl                            | Nivellierungs geschwindigkeit<br>[m/s] P1-19 | 0.065       | (2-0)                            |
| -                              | 2 poles 50 Hz                                   | *                               | Beladener Fahrkorb, Druck [bar]              | 38.6        |                                  |
|                                | 2 poles 60 Hz<br>4 poles 50 Hz<br>4 poles 60 Hz | *                               |                                              |             | (204                             |

Bild 23: Tabelle 1 und Tabelle 2 des EV4 Rechners

Tabelle 1: Öltyp, Anzahl der Motorpole und Motorfrequenz werden hier ausgewählt. Siehe Bild 23.

Tabelle 2: Aufzugsdaten werden hier eingegeben und die optimierten Abbremsungsparameter (C2-03, C1-02und C2-04) angegeben. Diese sind anfänglich zu benutzen. Siehe Bild 23.





 Tabelle 3: Parameter f

 in Pumpe werden berechnet und in Tabelle 3 gezeigt (von P1-11 bis P1-15). Diese

 Parameter werden in den L1000H Umrichter eingegeben.

Mit "Show or hide all parameters" lassen sich alle Werte anzeigen, welche für den Umrichter berechnet wurden.

Parameter in blauer Schrift (P3-10, P3-13 und P3-16) werden nach einer Lernfahrt ermittelt.

#### Anzeigen oder Ausblenden alle Tabellen



Bild 24: Tabelle 3 mit den Berechnungsergebnissen

#### 5.4 SCHRITT 3: EINSTELLEN DES PARAMETERS P4-01=1

Durch setzen des Parameters P4-01 auf 1 misst der L1000H Umrichter die Öltemperatur, berechnet die notwendigen Frequenzen für die Geschwindigkeiten und den Temperaturverstärkungswert (Grundberechnungen).



Die Berechnung wurde erfolgreich durchgeführt wenn im Display "END" gefolgt von einer "0" erscheint (Parameter P4-01 wird selbsttätig auf "0" zurückgesetzt).

Die P1-Parameter werden zur Berechnung der Frequenzreferenzen (P3-xx) benutzt falls P4-01 gleich 1 gesetzt ist. Änderungen einzelner P1-Parameter von Hand haben keinen Einfluss auf die bestehenden Parameter (P3-xx Parameter), solange P4-01 nicht erneut wieder auf 1 gesetzt ist.



Zeigt der Umrichter oPE12 Alarm (ALM LED blinkt), sind die P1 Werte zu überprüfen und entsprechend zu korrigieren (Die Bedingungen P1-16 > P1-17 > P1-18 > P1-19 oder P3-04 > P3-07 x P6-05 oder P3-04 > P3-07 x P6-06 oder P7-06 oder P1-03 > P1-02 oder P1-11 > P1-12 oder P3-01, P3-01, P3-02 < E1-06 müssen eingehalten werden).





Die Grundberechnungen (P4-01=1) alleine, ohne eine Lernfahrt durchzuführen, ist nicht ausreichend. Schlechte Fahreigenschaften wären die Folge.

Ändern der P1-xx Parameter nach durchgeführter Grundberechnung hat keinen Einfluss auf die berechneten Parameter. Falls es nötig sein sollte einen Parameter zu ändern, dann muss die Grundberechnungen neu ausgeführt werden.

Die Geschwindigkeiten werden durch die Werte (P1-16, P1-17, P1-18, P1-19) in m/s geändert. Bei Umrichtern bis 15kW muss anschließend die Grundberechnung und eine Lernfahrt durchgeführt werden. Bei größere Umrichter erfolgen dies automatisch.

#### 5.5 SCHRITT 4: LERNFAHRT VORBEREITEN

Vorbereiten des Umrichters für eine Lernfahrt. Sicherstellen, dass der Aufzug mit Nenngeschwindigkeit fährt und die Schleichfahrt mindestens eine Sekunde lang ist. Setzte P4-01 = 2.

#### **5.6 SCHRITT 5: ALM ANZEIGE**

Am Umrichter blinkt "TEACH" und die "ALM" (Alarm) LED leuchtet.



Wird die Fernbedienung verwendet ist der Programmier-Modus zu verlassen, da sonst "TEACH" nicht auf dem Display erscheint (Nach dem Verlassen des Programmier-Modus kann es ca. 20s dauern bis "TEACH" auf dem Display erscheint).

#### 5.7 SCHRITT 6: LERNFAHRT MIT LEERER KABINE DRUCHFÜHREN

- Sicherstellen, dass der Aufzug unbeladen ist
- Nenngeschwindigkeit auswählen und den Aufzug zwischen zwei Etagen fahren lassen
- Wurde nach Erreichen des Stopp-Schalters eine erfolgreiche Lernfahrt abgeschlossen erscheint auf dem Umrichter-Display entweder "SAVE" oder "WRTP"



Falls der Umrichter "SAVE" oder "WRTP" anzeigt, muss P4-01 entweder auf 3 zum Akzeptieren der Lernfahrt oder um die Lernfahrt zu stornieren auf 0 gesetzt werden. Zum Wiederholen der Lernfahrt ist P4-01 zuerst auf 0 und dann zum Start der Lernfahrt auf 2 zu setzen.



**WRTP bedeutet**, dass der Umrichter erneut automatisch die Grundberechnungen durchgeführt hat. Dies ist der Fall, wenn die Öltemperatur während der Lernfahrt deutlich von der Temperatur während der Grundberechnungen abweicht.

Alle Parameter, die durch die Lernfahrt geändert wurden können im "Verify" und "Programming" Menü angezeigt werden. Manuelle Änderungen sind möglich aber nicht notwendig.

Die Lernfahrt sollte nur einmal durchgeführt werden. Die Einstellungen für die Zwischen- und Inspektionsfahrgeschwindigkeit werden selbsttätig durchgeführt.

Technisch bedingt entspricht die Fahrqualität der Lernfahrt nicht der später erzielten Fahrqualität.



Zeigt der Umrichter nach Beendigung der Lernfahrt "TEACH" oder "SQEF" ist P4-01 auf 0 zu setzen und zu prüfen, ob der Aufzug überhaupt die Schleichfahrt erreichen kann (U7-07). Anschließend die Abbremsparameter korrigieren oder die Abstände der Schachtschalter ändern und die Lernfahrt ist durch das Setzen des Parameters P4-01 auf 2 zu wiederholen.



#### 5.8 SCHRITT 7: PARAMETER SPEICHERN

Nach erfolgreicher Lernfahrt - "SAVE" oder "WRTP" blinkt auf dem Display – kommt man durch Drücken der "ENTER"-Taste zurück zum Programmiermodus. Der Parameter P4-01 ist jetzt auf 3 zu setzen. Der Umrichter zeigt dann "END" gefolgt von einer "0" an. Dies bedeutet, dass die Werte der Lernfahrt akzeptiert und P4-01 auf 0 (betriebsbereit) gesetzt wurden.



## 6. FAHRPARAMETER

#### 6.1 P3-XX PARAMETER: REFERENZFREQUENZ UND LASTREFERENZEINSTELLUNGEN

Die Frequenzen der Geschwindigkeiten (Hz) werden durch die P1-xx Werte berechnet und zusammen mit den Referenzwerten der Last und Temperatur in den P3-xx Parametern gespeichert. Siehe **Tabelle 7**.

| Parameter | Anzeige im Display<br>Beschreibung                                                             | Parameterwerte                  | Bereich           | Vorein-<br>gestellter<br>Wert |
|-----------|------------------------------------------------------------------------------------------------|---------------------------------|-------------------|-------------------------------|
| P3-01     | FSollw Nenn-leer<br>Frequenz für<br>Nenngeschwindigkeit –<br>unbeladen                         | Vom Umrichter berechnet         | 0,00 bis E1-06 Hz | 42,87 Hz                      |
| P3-02     | FSollw Zwis-leer<br>Frequenz für<br>Zwischengeschwindigkeit –<br>unbeladen                     | Vom Umrichter berechnet         | 0,00 bis E1-06 Hz | 32,75 Hz                      |
| P3-03     | FSollw Insp-leer<br>Inspektionsfahrt – unbeladen                                               | Vom Umrichter berechnet         | 0,00 bis 50,00 Hz | 17,59 Hz                      |
| P3-04     | FSollw Einf-leer<br>Frequenz für<br>Schleichfahrtgeschwindigkeit<br>– unbeladen                | Vom Umrichter berechnet         | 0,00 bis 50,00 Hz | 5,45 Hz                       |
| P3-07     | FSollw Leck leer<br>Leckverlust der Pumpe –<br>unbeladen                                       | Vom Umrichter berechnet         | 0,00 bis 25,00 Hz | 2,43 Hz                       |
| P3-10     | DmSollwNenn-leer<br>Referenzdrehmoment bei<br>Nenngeschwindigkeit –<br>unbeladen [%] bei P3-16 | Während der Lernfahrt ermittelt | 0 bis 150%        | 75 %                          |
| P3-11     | DmSollwZwis-leer<br>Referenzdrehmoment<br>Zwischengeschwindigkeit –<br>unbeladen               | Vom Umrichter berechnet         | 0 bis 150%        | 70 %                          |
| P3-12     | DmSollwInsp-leer<br>Referenzdrehmoment bei<br>Inspektionsgeschwindigkeit –<br>unbeladen        | Vom Umrichter berechnet         | 0 bis 150%        | 67 %                          |
| P3-13     | DmSollwEinf-leer<br>Referenzdrehmoment bei<br>Schleichfahrtgeschwindigkeit<br>– unbeladen      | Während der Lernfahrt ermittelt | 0 bis 150%        | 64 %                          |
| P3-16     | <i>Temperatursollw.</i><br>Temperaturreferenz                                                  | Während der Lernfahrt ermittelt | 0,0 bis 100,0°C   | 21,0 °C                       |

Tabelle 7: Referenzwerte für Frequenzen der Geschwindigkeiten, Drehmoment und Temperatur



Die Frequenzen der Geschwindigkeiten, insbesondere der Nenn- und Zwischengeschwindigkeiten, dürfen nicht die Geschwindigkeit des Synchronmotors erreichen. Der Installateur hat sicherzustellen, dass die mechanischen und elektrischen Grenzen des Motors nicht überschritten werden. Ebenfalls ist er verantwortlich für die Einhaltung der Sicherheitsstandards.



Alternativ können die Referenzfrequenzen der verschiedenen Geschwindigkeiten auch von Hand eingegeben werden. Allerdings ist es zu empfehlen die P1-xx Werte einzugeben und die Berechnung vom Umrichter ausführen zu lassen.

#### 6.2 P4-01 PARAMETER: AUSWAHL DES BETRIEBSMODUS

Es gibt vier verschiedenen Betriebsmodi, welche in Tabelle 8 dargestellt sind. Modus "1", "2" und "3" sind für die Inbetriebnahme und "0" für den Betrieb.

| Parameter | Anzeige im Display<br>Beschreibung          | Parameterwerte                                                                    | Bereich | Voreinge-<br>stellter<br>Wert |
|-----------|---------------------------------------------|-----------------------------------------------------------------------------------|---------|-------------------------------|
| P4-01     | Aufzugsinitial.<br>Auswahl der Betriebsmodi | 0: Betrieb<br>1: Grundberechnungen<br>2: Lernfahrt<br>3: Erlernte Werte speichern | 0 bis 3 | 0                             |

Tabelle 8: Betriebsmodi

#### 6.3 P5-XX PARAMETER: EINSTELLUNG DER KOMPENSATIONSGRENZEN

Entsprechend der Last und der Öltemperatur werden die Ausgangsfrequenzen durch die Software angepasst. Jedoch sind die Kompensationswerte begrenzt, um eine Überkompensation zu verhindern. Die P5-xx Parameter sind der **Tabelle 9** zu entnehmen.

| Parameter | Anzeige im Display | Beschreibung                                              | Bereich                | Voreinge-<br>stellter<br>Wert |
|-----------|--------------------|-----------------------------------------------------------|------------------------|-------------------------------|
| P5-01     | Max Drehm. Komp.   | Legt die obere Grenze der<br>Drehmomentkompensation fest  | 0,00 bis<br>20,00 Hz   | 8,00Hz                        |
| P5-02     | Min Drehm. Komp.   | Legt die untere Grenze der<br>Drehmomentkompensation fest | 0,00 bis<br>20,00 Hz   | 0,00Hz                        |
| P5-03     | Max Temp. Komp.    | Legt die obere Grenze der<br>Temperaturkompensation fest  | 0,00 bis<br>20,00 Hz   | 8,00Hz                        |
| P5-04     | Min Temp. Komp.    | Legt die untere Grenze der<br>Temperaturkompensation fest | -20,00 bis<br>20,00 Hz | -2,00Hz                       |

Tabelle 9: Grenzen der Last- und Temperaturkompensation

#### 6.4 P6-XX PARAMETER: PARAMETER DER WARTEFUNKTION

Um einen weiches und zügiges Anfahren und Anhalten zu erreichen gibt es die Wartezeit-Funktionen. Die P6-xx Parameter sind der **Tabelle 10** zu entnehmen.



| Parameter | Anzeige im Display | Beschreibung                                                                              | Bereich             | Voreinge-<br>stellter<br>Wert |
|-----------|--------------------|-------------------------------------------------------------------------------------------|---------------------|-------------------------------|
| P6-01     | OffsHaltFreqStrt   | Wartezeit an der Startrampe                                                               | 0,00 bis<br>20,00Hz | 2,00Hz                        |
| P6-02     | Haltezeit 1 Strt   | Nur bei Nenn-, Zwischen- oder<br>Inspektionsgeschwindigkeit.                              | 0,00 bis<br>20,00s  | 2,00s                         |
| P6-03     | Haltezeit 2 Strt   | Nur bei Nachholung.                                                                       | 0 bis 20,00s        | 1,00s                         |
| P6-05     | Fakt. Leck Strt    | Verstärkungsfaktor für den<br>Leckverlust beim Start (nur bei<br>Nachholung).             | 0,000 bis<br>3,000  | 1,200                         |
| P6-06     | Fakt. Leck Stop    | Verstärkungsfaktor für den<br>Leckverlust beim Anhalten (bei<br>allen Geschwindigkeiten). | 0,000 bis<br>3,000  | 1,000                         |
| P6-07     | Haltezeit Stop     | Wartezeit beim Anhalten.                                                                  | 0,00 bis<br>5,00    | 0,30s                         |

Tabelle 10: Haltezeitparameter (Dwell Funktion)

#### 6.5 P7-XX PARAMETER: PARAMETER DER SCHLEICHFAHRTKORREKTUR

Für den Fall, dass durch eine abgenutzte Pumpe oder falsche Einstellung die Schleichfahrt sehr klein oder Null ist, gibt es die Schleichfahrt Wiederaufnahme (Recovery) Funktion. Mit dieser ist ein Erreichen der nächsten Etage möglich. *Tabelle 11* zeigt die zugehörigen P7-xx Parameter.

| Parameter | Anzeige im Display   | Beschreibung                                                        | Bereich              | Voreinge-<br>stellter<br>Wert |
|-----------|----------------------|---------------------------------------------------------------------|----------------------|-------------------------------|
| P7-01     | WartZeitEinfStrg     | Nach dieser Wartezeit wird die<br>Schleichfahrt schrittweise erhöht | 0,00 bis<br>10,00 s  | 3,00 s                        |
| P7-02     | SchrittFreqEfStrg    | Schrittweite der Frequenz-<br>Erhöhung von der Schleichfahrt        | 0,00 bis<br>5,00 Hz  | 0,25 Hz                       |
| P7-03     | SchrittzeitFrqEfStrg | Wartezeit bis zur nächsten<br>Erhöhung                              | 0,00 bis<br>5,00s    | 0,30 s                        |
| P7-05     | Max Einfahrzeit      | Obergrenze für die<br>Frequenzerhöhung der<br>Schleichfahrt         | 0,00 bis<br>35,00 Hz | 7,00Hz                        |

Tabelle 11: Parameter der Wiederaufnahmefunktion der Schleichfahrt



#### **6.6** P8-XX PARAMETER: PARAMETER DER SONDERFUNKTIONEN

Die Parameter für Drehmoment, Temperaturverstärkungs sowie Überlasterkennung sind in der **Tabelle 12** aufgelistet.

| Parameter | Anzeige im Display                                                                          | Beschreibung                                                                                                                                                                       | Bereich              | Voreinge-<br>stellter Wert |
|-----------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|
| P8-01     | Fakt. Temp. Komp                                                                            | Temperaturverstärkung für<br>Temperaturkompensation                                                                                                                                | 0 bis 1000<br>[1/°C] | 211                        |
| P8-02     | Fakt. Drehm Komp                                                                            | Drehmomentverstärkung für<br>Lastkompensation                                                                                                                                      | 0 bis 1000<br>[1/%]  | 84                         |
| P8-03     | Fakt. TempDrmKomp                                                                           | Drehmomentverstärkung für<br>Lastkompensation (Temperatur)                                                                                                                         | 0 bis 1000<br>[1/°C] | 400                        |
| P8-04     | Fakt. NachregelGVerstärkungsfaktor für Sollwert<br>Einfahrgeschwindigkeit beim<br>Nachholen |                                                                                                                                                                                    | 0,000 bis<br>5,000   | 1,000                      |
| P8-05     | Korr.fakt. tx                                                                               | Verstärkungsfaktor der Verzögerung von tx (siehe Kapitel 8.1)                                                                                                                      | 0,00 bis 3,00        | 1,0                        |
| P8-06     | FaktDmSollwÜberl                                                                            | Zusätzlicher Faktor zum einstellen<br>des Drehmoment-sollwertes bei<br>Überlast                                                                                                    | 0,1 bis 3,0          | 1,0                        |
| P8-07     | Überlast-Strom                                                                              | Stromgrenze zum Erkennen von<br>Überlast. In % des<br>Umrichternennstromes.                                                                                                        | 0 bis 200%           | 150                        |
| P8-08     | Überlast-Zeit                                                                               | Erkenungszeit Überlast: Zeit, die der<br>Ausgangsstrom über P8-07 liegen<br>muss, um die Überlast-funktion<br>auszulösen. Einstellung P8-08=0<br>deaktiviert die Überlastfunktion. | 0,00 bis 3,00        | 1,00                       |
| P8-11     | Faktor SEQF                                                                                 | Verstärkungsfaktor zur erkennung eines Sequenzfehlers (SEQF)                                                                                                                       | 1,00 bis 2,00        | 1,35                       |

Tabelle 12: Verstärkungsfaktoren und Überlastparameter

#### 6.7 ÜBERWACHEN VON PARAMETERWERTEN

Die P Parameter können während und nach einer Fahrt angeschaut werden. Dies kann für eine Diagnose des Systems hilfreich sein. *Tabelle 13* zeigt diese Parameter.

| Parameter | Anzeige im Display | Beschreibung                                                                 |
|-----------|--------------------|------------------------------------------------------------------------------|
| U7 - 02   | Temperatur         | Aktuelle Öltemperatur[°C]                                                    |
| U7 - 03   | Last-Monitor       | Erfasstes Drehmoment [%] welche zur Berechnung der<br>Beladung benötigt wird |
| U7 - 04   | Drehmomentkomp.    | Drehzahlkompensation [Hz]<br>Höhe der berechneten Lastkompensation           |
| U7 - 05   | Temp. Komp.        | Temperaturkompensation [Hz]<br>Höhe der berechneten Temperaturkompensation   |
| U7 - 06   | TempKomp. DmSollw  | Temperaturabhängiger Faktor zur Korrektur der Lastreferenz                   |
| U7 - 07   | Einfahrzeit        | Vorherige Schleichfahrtdauer [s]                                             |
| U7 – 08   | Min. ÜL-Frequenz   | Mindestfrequenz, um Überlast zu bestimmen [Hz]                               |

#### Tabelle 13: Überwachungsparameter



Eine vollständige Übersicht der überwachten Umrichterparameter finden Sie in der Kurzanleitung Quick Start Guide (QSG) von von Yaskawa.



#### 6.8 BEISPIEL

Von einem Aufzug sind folgende Angaben vorhanden:

| Eigenschaft                                     | Wert        | Zugehöriger<br>EV4 -Parameter |
|-------------------------------------------------|-------------|-------------------------------|
| Öltyp                                           | ISO VG46    | P1-01, P1-02 & P1-03          |
| Kolbendurchmesser [mm]                          | 110         | P1-04                         |
| Anzahl der Zylinder                             | 1           | P1-05                         |
| Übersetzungsverhältnis                          | 2:1         | P1-06                         |
| Druck bei unbeladener Kabine [bar]              | 18          | P1-07                         |
| Traglast [kg]                                   | 1000        | P1-08                         |
| Dynamische Druckerhöhung [bar]                  | 5           | P1-09                         |
| Nenngeschwindigkeit [m/s]                       | 0,6         | P1-16                         |
| Zwischenzeitige Geschwindigkeit [m/s]           | 0,5         | P1-17                         |
| Inspektionsgeschwindigkeit [m/s]                | 0,3         | P1-18                         |
| Schleichfahrtgeschwindigkeit [m/s]              | 0,065       | P1-19                         |
| Pumpenfördermenge[l/min]100cSt,40bar            | 181         | -                             |
| Motor, 3 Phasen, 400VAC, 2780 min <sup>-1</sup> | 11kW – 50Hz | -                             |

#### 1) Sollwerte eingeben

Entsprechend der Nenngeschwindigkeit des Aufzugs können folgende Parameter ausgewählt werden:

| Beschleunigungsparameter | Wert  | Abbremsparameter | Wert<br>(von Tabelle 5) |
|--------------------------|-------|------------------|-------------------------|
| C1-03                    | 10,0s | C2-03            | 0,3s                    |
| C2-01                    | 1,8s  | C1-02            | 2,4s                    |
| C1-01                    | 2,8s  | C2-04            | 1,4s                    |
| C2-02                    | 0,5s  | C1-04            | 2,0s                    |
|                          |       |                  |                         |

Schalterabstand auf 105cm einstellen (Tabelle 5).

#### 2) Eingabe der Öl und Aufzugsdaten (P1- xx Parameter)

Eingabe der oben gezeigten Daten.

#### 3) Ermitteln der Pumpendaten anhand des Blain EV4 Rechners (http://www.blain.de/calc)

Mittels des Blain EV4 Rechners können die folgenden Pumpendaten ermittelt werden:

| Pumpendaten                                  | Eingabe in den Umrichter |  |
|----------------------------------------------|--------------------------|--|
| P1-11 (Fördermenge bei 100cSt & max. Druck)  | 180,9                    |  |
| P1-12 (Fördermenge bei 25cSt & max. Druck)   | 171,1                    |  |
| P1-13 (Drehzahl der Pumpe)                   | 2750                     |  |
| P1-14 (Fördermenge bei 100cSt & min. Druck)  | 184,0                    |  |
| P1-15 (Fördermenge bei 100cSt & 1 bar Druck) | 191,0                    |  |

- 4) Eingabe der Pumpenparameter (P1-11 bis P1-15) in den Umrichter
- 5) P4-01 auf 1 setzen (Lernfunktion: Grundberechnungen werden vom Umrichter durchgeführt).



Falls der Fehler oPE02 erscheint liegen die eingegebenen oder berechneten Parameter außerhalb des Einstellbereichs. Zum Anzeigen der Werte "Enter" auf der Fernbedienung drücken. Falls der Fehler oPE12 erscheint sind die berechneten Frequenzen falsch, da eine der folgenden Bedingungen nicht erfüllt ist:

 $\begin{array}{l} P1-16 > P1-17 > P1-18 > P1-19 \quad oder \\ P3-01 > P3-02 > P3-03 > P3-04 \quad oder \\ P3-04 > (P3-07 \times P6-05) \ und \ P3-04 > (P3-07 \times P6-06) \quad oder \\ P7-05 > P3-04 \ oder \\ P1-03 > P1-02 \ oder \\ P1-11 > P1-12 \ oder \\ P1-15 + P1-23 > P1-14 \\ P3-01, \ P3-02, \ P3-03 < E1-06 \end{array}$ 



Geschwindigkeitsfrequenzen (**P3-01** bis **P3-07**) sollten unter der Synchrongeschwindigkeit des Motors liegen (in diesem Fall 50Hz). Idealerweise sollte **P3-01** im Bereich der Nenngeschwindigkeit des Motors liegen (in diesem Fall ca. 46 Hz).

| Parameter der Geschwindigkeitsfrequenzen | Frequenz [Hz] |
|------------------------------------------|---------------|
| P3-01 (Nenngeschwindigkeit)              | 46,3          |
| P3-02 (Zwischengeschwindigkeit)          | 37            |
| P3-03 (Inspektionsgeschwindigkeit)       | 22,79         |
| P3-04 (Schleichfahrtgeschwindigkeit)     | 6,1           |
| P3-07 (Pumpen-Leckverlust)               | 1,49          |

#### 6) P4-01 auf 2 setzen (Lernfunktion: Lernfahrt ausführen)

"ALM" LED und "TEACH" Warnung blinkt. Der Anwender wird dadurch aufgefordert eine Lernfahrt durchzuführen.

- 7) Lernfahrt mit unbeladener Kabine durchführen.
- 8) Falls "SAVE" oder "WRTP" angezeigt wird, ENTER drücken und P4-01 auf 3 setzen. Falls nicht, die Lernfahrt unter Berücksichtigung der Fehlermeldungen (siehe *Bild 22*) wiederholen.
- 9) Den Aufzug laufen lassen und die Beschleunigung, Abbremsung und Haltegenauigkeit überprüfen. Falls nötig die Parameter der Sollkurve den Bedürfnissen anpassen.



## 7. FAHRKURVE UND START BEFEHL

#### 7.1 START PROZEDUR

Mit den Steuersignalen für den Aufwärtsbefehl **S1** und den der Geschwindigkeitsauswahl **S4, S5** oder **S6** wird eine Aufwärtsfahrt gestartet. Liegt nur das **S1** Signal an fährt der Aufzug mit Schleichgeschwindigkeit. Liegt jedoch das **S1** und **S4** Signal an, beschleunigt der Aufzug bis zur Nenngeschwindigkeit. Wird nun das **S4** Signal abgeschaltet bremst der Aufzug bis zur Schleichfahrtgeschwindigkeit ab und fährt mit dieser weiter bis das **S1** Signal ebenfalls abgeschaltet wird. Nach dem Abschalten von Signal S1, sollen die Motor-Schaltschütze noch ca. 1 Sekunde gehalten werden, bis das Ende der Wartezeit (dwell) erreicht ist.

Optional kann das Signal der Endstufensperre (bb - Basisblock-Signal) der Aufzugssteuerung verwendet werden. Dann kann im Fehlerfall der Schaltschrank das bb-Signal an den Umrichter (**S3**) weitergeben, um so die Fahrt anzuhalten. In diesem Fall stoppt der Aufzug mit einem Ruck. Die Verwendung des Signals wird über den Parameter **H1-03** (Standardwert: **24**) gesteuert. Soll das bb-Signal nicht verwendet werden, ist der Parameter auf den Wert **F** zu ändern. Das bb-Signal sollte erst nachdem die dwell-Funktion beendet wurde wieder an den Umrichter gegeben werden.

|                              | Aufwärts Befehl | Auswahl der<br>Geschwindigkeit |
|------------------------------|-----------------|--------------------------------|
| Nenngeschwindigkeit          | S1              | S4                             |
| Zwischengeschwindigkeit      | S1              | S5                             |
| Inspektionsgeschwindigkeit   | S1              | S6                             |
| Schleichfahrtgeschwindigkeit | S1              | -                              |

Die möglichen Geschwindigkeiten und die zugehörigen Signale sind wie folgt:

Die Umrichter-Ansteuerung ist in Bild 25 dargestellt.



#### Bild 25: Ansteuerungssignale des Umrichters





Bei der Eingabe der Geschwindigkeitsparameter in m/s (P1-16 bis P1-19) ist die Reihenfolge einzuhalten Nenngeschwindigkeit > Zwischengeschwindigkeit > Inspektionsgeschwindigkeit > Schleichfahrtgeschwindigkeit. Falls nicht, wird die Fehlermeldung oPE12 Alarm angezeigt.

Falls fälschlicherweise mehrere Geschwindigkeiten gleichzeitig angesteuert werden, wird immer die langsamste ausgeführt.

Um eine schnelle Nachholung zu bekommen, können die Frequenzen des Pumpenleckverlusts (P3-07) und der Startverzögerung (P6-03) für die Nachholung erhöht werden. Erhöhen des Parameters P6-05 (voreingestellter Wert ist 1.20) und/oder verringern des Parameters P6-03 (voreingestellter Wert ist 1.00) erzielt eine schnellere Nachholung. Siehe Bild 18.

#### 7.2 ÜBERPRÜFUNG DER SIGNALE VON DER AUFZUGSSTEUERUNG

Falls die Steuerleitungen von der Aufzugssteuerung falsch angeschlossen sind fährt der Aufzug nicht oder fährt nicht wie gewollt. Um die korrekte Ansteuerung zu überprüfen wird der U1-10 Parameter (Status der Eingänge) genutzt. Zu Beginn wird "00000000" angezeigt. Erhält der Umrichter Steuersignale für eine Normalfahrt wechselt die Anzeige auf "00001001" und der Aufzug beschleunigt bis zur Nenngeschwindigkeit. Beim Erreichen des Abbremspunktes wechselt die Anzeige auf "00000001". Ähnlich verhält es sich bei Zwischen- und Inspektionsfahrten, nur das die Anzeige zu Beginn "00010001" bzw. "00100001" anzeigt.



U1-10: Status der Eingänge

#### 7.3 ABBRUCH DER FAHRT

Der Umrichter bricht die Fahrt in den folgenden Fällen ab:

| Abbruch                               | Ursache                                                                                                                |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Anhalten entsprechend der C1-04 Rampe | Das Aufwärtssignal wird abgeschaltet, obwohl eines der Geschwindigkeitssignals weiter anliegt.                         |  |
| Sofortiges Anhalten aus Vollfahrt     | Das Aufwärtssignal wird abgeschaltet während der<br>Umrichter in die Schleichfahrt verzögert.                          |  |
| Anhalten aus Vollfahrt                | Dauer der Schleichfahrt erreicht 60s                                                                                   |  |
| Anhalten durch Befehl                 | An einem der digitalen Eingänge liegt ein Fehlersignal an.                                                             |  |
| Anhalten durch Befehl                 | Die Brücke an HC (Eingang H1 und H2) wird<br>unterbrochen oder ein Digitaleingang wird auf "Base<br>Block" geschaltet. |  |

Tabelle 15: Abbrüche und deren Ursachen

#### 7.4 QUELLE DER REFERENZFREQUENZ UND DES STARTSIGNALS

Der Umrichter wird im Normalbetrieb (Local Mode) mittels der Steuersignale S1-S6 angesteuert und die Starttaste der Eingabeeinheit ist gesperrt. Durch Drücken der "LO/RE" Taste (Remote Mode) lässt sich der Start von der Eingabeeinheit aus starten. Um dies zu ermöglichen (z.B. zum Testen eines Motors) ist o2-01 auf 1 zu setzen (Um den o2-01 Parameter zu ändern ist der Zugriff von "Customer" auf "Advance" zu setzten. Siehe Abschnitt Sonstige Funktionen)



## 8. SONDERFUNKTIONEN

#### 8.1 ZEITKOMPENSIERUNG BEI DER ABBREMSUNG

Wenn der Umrichter den Aufzug langsamer als die Nenngeschwindigkeit fahren lässt, findet der Übergang in die Schleichfahrt um  $t_x$  Sekunden verzögert statt, um eine möglichst kurze Fahrzeit (bzw. immer dieselbe Schleichfahrtdauer) und eine gute Fahrqualität (siehe *Bild 26*) zu erreichen. Die Zeit  $t_x$  wird vom Umrichter selbsttätig ermittelt.



#### Bild 26: Kompensation der Abbremsung für konstante Dauer der Schleichfahrt

Falls die Dauer der Schleichfahrt gegenüber der Schleichfahrt bei Nenngeschwindigkeit abweicht, kann der Parameter P8-05 (voreingestellter Wert ist 1,00) wie folgt geändert werden.

| Schleichfahrt | Aktion                                             |
|---------------|----------------------------------------------------|
| Zu lang       | Schrittweises Erhöhen von P8-05 um jeweils 0,05    |
| Zu kurz       | Schrittweises Verringern von P8-05 um jeweils 0,05 |

Tabelle 16: Schleichfahrtdauer & Überlastfall



Falls die Schleichfahrtgeschwindigkeit bei einer Zwischen- oder Inspektionsfahrt zu niedrig ist, ist der Referenzwert des Drehmoments um 5% zu reduzieren (P3-11 für die Zwischengeschwindigkeit oder P3-12 für die Inspektionsgeschwindigkeit) oder der P8-06 Parameter in Schritten von 0,05 zu verkleinern.

#### 8.2 GESCHWINDIGKEITSREGELUNG BEI DER SCHLEICHFAHRT

Wurde das Setup falsch durchgeführt (z.B. P1 Parameter wurden falsch eingegeben) kann die Pumpe nicht die benötigte Menge an Öl fördern oder die Schleichfahrtgeschwindigkeit wird sehr klein sein. In einem solchen Fall würde der Aufzug die nächste Etage nicht erreichen oder die Fahrt sehr lange dauern. Beide Fälle führen zu schlechten Fahreigenschaften und höhere Sicherheitsrisiken. Aus diesen Gründen erhöht der Umrichter die Geschwindigkeit nach einer bestimmten Wartezeit automatisch bis zu der festgelegten Maximalgeschwindigkeit von (P7-05).







Bild 27: Wiederaufnahmefunktion der Schleichfahrt

#### 8.3 ÜBERWACHUNGDER SCHLEICHFAHRTDAUER

Erreicht die Schleichfahrtdauer den im Parameter P7-04 eingestellten Wert (60s), gibt der Umrichter die Fehlermeldung LETA (Leveling Time Alarm) aus und hält den Aufzug entsprechend der Anhalte-Rampe an. Um den Umrichter wieder zu starten, muss das externe START (RUN) gedrückt werden. Die Überwachung der Schleichfahrtdauer findet bei allen Aufwärtsfahrten statt - auch beim Nachholen. Dies schützt das System vor unvorhergesehenen Fehlfunktionen. (siehe **Bild 27**)



## 9. ENERGIESPARBETRIEB / ÜBERLASTBETRIEB

Um Energie zu sparen kann die Größe des Motors und des Umrichters 20% kleiner gewählt werden. Dies bedeutet, dass die maximale Geschwindigkeit ohne Beladung erreicht wird und bei maximaler Beladung eine geringere. Dadurch wird die Energieeffizienz des Aggregats erhöht, sowie die Wirtschaftlichkeit des Aufzugssystems. Die Überlastfunktion ist nur bei Zwischen- und Nenngeschwindigkeit vorhanden. Überprüfen Sie bitte Ihre Softwareversion (21300 oder 21310) mittels des Parameters U1-25 im "Monitor Menü" und ergänzen Sie bitte die Überlasteinstellungen wie unten beschrieben.

#### 9.1 Software Version 21300

Die "Stall prevention during acceleration" Funktion (L3-01) legt die Überlastbedingungen fest. Die "Stall Prevention Funktion" ist im Auslieferungszustand auf 1 (aktiv) gesetzt. Bei Erreichen eines Ausgangsstroms (U1-03) von 85% vom vordefinierten Niveau (Parameter L3-02) wird die Beschleunigung verringert. Wird der Parameterwert L3-02 erreicht, stoppt die Beschleunigung, wird aber wieder aufgenommen, falls der Strom unter den Parameterwert L3-02 fällt. Weiterführende Informationen finden sich in der Bedienungsanleitung Yaskawa L1000H.

Erreicht der Ausgangsstrom den maximal eingestellten Wert (L3-02), wird der Überlastfunktion ausgelöst. Der Umrichter beendet die Beschleunigung und ersetzt die Frequenz der Vollfahrt mit dem neuen Wert. Die Abbremszeit wird in diesem Fall ebenfalls kompensiert, um die kürzeste Fahrzeit zu erreichen.



Der Energiespar/Überlast Modus kann durch Setzen des Parameters L3-01 auf 0 ausgeschaltet werden. Es wird empfohlen den Parameter L3-01 nicht abzuschalten, um den Umrichter vor Überlastung zu schützen. Der Überlastbetrieb (L3-01=0) kann zu schlechten Fahreigenschaften führen.

#### 9.2 Software Version 21310

Die "Stall prevention during acceleration" Funktion (**L3-01**) wird nicht für die Überlastbedingungen genutzt. Wir empfehlen den Parameter **L3-01** auf "0" zu setzen.

Erreicht der Ausgangsstrom den Grenzwert, welcher in **P8-07** festgelegt ist (voreingestellt auf 150%) für eine Dauer wie in **P8-08** eingestellt (empfohlen sind 0,1 Sekunden) wird die Überlastfunktion ausgelöst. In diesem Fall wird die Abbremszeit so verändert, dass die kürzeste Fahrzeit erreicht wird. Die Überlastfunktion kann durch setzten des Parameters **P8-08** auf 0 ausgeschaltet werden.



Beim Verringern der Nenngeschwindigkeit durch den Umrichter, sollte die Schleichfahrtgeschwindigkeit und –dauer gleich bleiben. Falls die Schleichfahrtgeschwindigkeit zu hoch/niedrig werden sollte ist der Parameter **P8-06** in Schritten von 0,1 zu verringern/erhöhen. Falls die Schleichfahrtdauer zu kurz/lang werden sollte ist der Parameter P8-05 in Schritten von 0,05 zu verringern/erhöhen.



Es gibt eine Minimale-Geschwindigkeits-Frequenz unter der die Überlastfunktion nicht aktiv ist. Die Minimale-Geschwindigkeits-Frequenz (U7-08) kann im Monitor-Menüs überwacht werden. Empfohlene Abbremsparameter können mittels des EV4 Rechners (www.blain.de/calc) aus Tabelle 2 entnommen werden. Falls diese nicht klein/groß genug sein sollten, müssen die Werte für die Abbremsrampe durch die folgende Formel berechnet werden:



Minimale Geschwindigkeits-Frequenz [Hz]:<br/> $U7-08 = (P3-04) + \frac{(C2-03) + (C2-04)}{2(C1-02)} \times (E1-04) + TempkompensationRechenbeispiel:<br/>P3-04=8,0Hz, E1-04=60Hz, C1-02=2,5s, C2-03=0,5s, C2-04=2,0s, Tempkompens.=1HzMinimale Geschwindigkeits-Frequenz [Hz] = U7-08 = <math>8 + \frac{0.5 + 2.0}{2 \times 2.5} \times 60 + 1 = 39$  HzBei starker Belastung des Motors, wird die neu berechnete Vollfahrt-Geschwindigkeit vom Umrichter auf 39 Hz reduziert.

## **10. SONSTIGE FUNKTIONEN**

#### **10.1 PARAMETERZUGRIFF (A1-01)**

Der Zugriff ist auf "**Customer level**" (A1-01=3) voreingestellt. Nur die notwendigen Parameter werden dadurch angezeigt. Es sollte nur bei Bedarf auf den "**Advance level**" (A1-01=2) umgeschaltet werden.

| Parameter Name | Wert | Zugriffslevel |
|----------------|------|---------------|
| A1 01          | 2    | Advance       |
| AT-01          | 3    | Customer      |

#### **10.2 BENUTZERDEFINIERTE VOREINSTELLUNGEN (02-03)**

Nachdem alle Umrichter Parameter vollständig eingegeben wurden, können diese als "Benutzerdefinierte Werte" durch Setzten des **o2-03** Parameters gespeichert werden. Sollen beim Initialisieren des Umrichters diese Werte verwendet werden ist der Parameter **A1-03** auf "**1110**: **User Initialized**" einzustellen. Siehe Abschnitt 10.4.

| Param.<br>Name | Wert | Beschreibung                                                                   |  |  |
|----------------|------|--------------------------------------------------------------------------------|--|--|
| o2-03          | 0    | Keine Änderung. Alle benutzerdefinierten Voreinstellungen bleiben unverändert. |  |  |
|                | 1    | Die aktuellen Voreinstellungen werden gespeichert.                             |  |  |
|                | 2    | Alle benutzerdefinierten Voreinstellungen werden gelöscht.                     |  |  |

#### 10.3 KOPIERFUNKTION (03-01)

Diese Funktion ist zum Kopieren der Parameter zum und von der Fernbedienung.

| Param.<br>Name | Wert | Beschreibung                                                                               |  |  |
|----------------|------|--------------------------------------------------------------------------------------------|--|--|
| o3-01          | 0    | Kopieren ausgewählt (keine Funktion)                                                       |  |  |
|                | 1    | INV $\rightarrow$ OP READ Alle Parameter werden vom Umrichter zur Fernbedienung kopiert.   |  |  |
|                | 2    | $OP \rightarrow INV$ WRITE Alle Param. werden von der Fernbedienung zum Umrichter kopiert. |  |  |
|                | 3    | $OP \rightarrow INV VERIFY$ Die Parameter werden mit dem der Fernbedienung verglichen.     |  |  |

Anmerkung: Die Kopierfunktion funktioniert nur, falls die Umrichternummer (o2-04) und die Softwarenummer (U1-25) übereinstimmen. Zum Aktivieren der Kopierfunktion **o3-02** auf **1** setzen, zum Deaktivieren **o3-02** auf **0** setzen.

#### **10.4 UMRICHTER INITIALISIEREN (A1-03)**

Setzt alle Parameter auf ihren ursprünglichen Wert zurück. Nach der Initialisierung wird der parameter selbsttätig auf 0 zurückgesetzt.



| A1-03 | 0    | Keine Initialisierung.                                                              |
|-------|------|-------------------------------------------------------------------------------------|
|       | 1110 | Benutzerdef. Initialisierung: Umrichter wird mit den benutzerdef. Param. geladen.   |
|       | 2220 | 2-Wire Initialisierung: Alle Param. werden auf ihren voreingestellten Wert gesetzt. |

Anmerkung: Eine "Benutzerdefinierte Initialisierung" setzt alle Param. auf die benutzerdef. Param., welche vorher im Umrichter gespeichert wurden. Um die benutzerdef. Werte zu löschen, ist der Param. **o2-03** auf "**2**" zu setzen.

#### **10.5 MONITOR PARAMETER (UX1-XX)**

Die Monitorparameter zeigen dem Benutzer Parameterwerte zu verschiedene Aspekten des Umrichters während der Fahrt an. Diese sind in der folgenden Tabelle dargestellt.

| Monitor-Parameter             | Beschreibung                                                   |  |  |
|-------------------------------|----------------------------------------------------------------|--|--|
| U1-xx : Statusparameter       | Zeigt die Statusparameter während der Fahrt an                 |  |  |
| U2-xx : Fehlerprotokollierung | Zeigt den Status von verschiedenen Parametern im Fehlerfall an |  |  |
| U3-xx : Fehlerliste           | Listet die aufgetretenen Fehler auf                            |  |  |

Von diesen Parametern sind die U1-XX Parameter eher für eine Fehleranalyse geeignet. Diese sind in der folgenden Tabelle dargestellt.

| Parameter | Name                       | Beschreibung                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| U1-01     | Referenzfequenz            | Zeigt die Referenzfrequenz an                                                                                                                                                                                                                                                                                                       |  |  |  |
| U1-02     | Ausgangsfrequenz           | Zeigt die aktuelle Ausgangsfrequenz an                                                                                                                                                                                                                                                                                              |  |  |  |
| U1-03     | Ausgangsstrom              | Zeigt den aktuellen Ausgangsstrom an                                                                                                                                                                                                                                                                                                |  |  |  |
| U1-04     | Überwachungsmethode        | 2: "open loop" Vektor                                                                                                                                                                                                                                                                                                               |  |  |  |
| U1-05     | Motordrehzahl              | Aktuelle Motordrehzahl [Hz]                                                                                                                                                                                                                                                                                                         |  |  |  |
| U1-06     | Ausgangsspannung           | Zeigt die aktuelle Ausgangsspannung an                                                                                                                                                                                                                                                                                              |  |  |  |
| U1-07     | DC bus Spannung            | Zeigt die DC bus Spannung an                                                                                                                                                                                                                                                                                                        |  |  |  |
| U1-08     | Ausgangsleistung           | Zeigt die aktuelle Ausgangsleistung an                                                                                                                                                                                                                                                                                              |  |  |  |
| U1-09     | Referenzdrehmoment         | Internes Referenzdrehmoment wird angezeigt                                                                                                                                                                                                                                                                                          |  |  |  |
| U1-10     | Status der Eingangssignale | Wenn kein Eingangssignale anliegt, wird der Status als "0" angezeigt,                                                                                                                                                                                                                                                               |  |  |  |
|           |                            | ansonsten als "1"                                                                                                                                                                                                                                                                                                                   |  |  |  |
|           |                            | Digital input terminal<br>S1 enabled     Digital input terminal<br>S2 enabled     Digital input terminal<br>S3 enabled     Digital input terminal<br>S4 enabled     Digital input terminal<br>S5 enabled     Digital input terminal<br>S6 enabled     Digital input terminal<br>S7 enabled     Digital input terminal<br>S7 enabled |  |  |  |
| U1-11     | Status der Ausgangssignale | Status der Ausgangssignale                                                                                                                                                                                                                                                                                                          |  |  |  |



## **11. FEINEINSTELLUNG UND FEHLERSUCHE**

## 11.1 IN AUFWÄRTSRICHTUNG

| Störung                                                     | Mögliche Ursache                                                                                | Abhilfe                                                                                                              |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
|                                                             | Überdruckventileinstellung zu gering                                                            | Einstellung vergrößern (siehe Seite 9).                                                                              |  |  |
|                                                             | Motor-Leerlaufstrom (E2-03) ist zu hoch<br>eingestellt (Ausgangs-strom überprüfen<br>→II1-03)   | Korrigiere Leerlaufstrom-Einstellung (E2-<br>03) (siehe Seite 23).                                                   |  |  |
| Umrichter läuft, aber der<br>Aufzug fährt nicht oder nur zu | V/f Parametereinstellung (E1-08 & E1-<br>10) sind falsch (Ausgangs-strom<br>überprüfen →U1-03). | Parameter E1-08 & E1-10 korrigieren.                                                                                 |  |  |
| langsam (<0.03m/s).                                         | Aufzug ist überladen                                                                            | Ladung reduzieren                                                                                                    |  |  |
|                                                             | C1-03 Zeit ist zu kurz                                                                          | Wert für C1-03 erhöhen                                                                                               |  |  |
|                                                             | Fehlerhafte Verdrahtung zum<br>Temperatursensor oder unzureichende<br>Versorgungsspannung       | Verdrahtung oder Versorgungsspannung<br>überprüfen (12Vdc bis 35Vdc).                                                |  |  |
|                                                             | Drehmomentverstärkung (P8-02) ist zu niedrig.                                                   | Wert für P8-02 erhöhen. Wert für<br>P8-02 schrittweise um 10% erhöhen.                                               |  |  |
|                                                             | Drehmomentreferenzwert ist zu hoch (fehlerhafte Lernfahrt).                                     | Lernfahrt wiederholen oder P3-10 um 10% vergrößern.                                                                  |  |  |
| Roi bobor Boladung ist dor                                  | Umrichter arbeitet im Überlastbereich                                                           | L3-01=1 setzen.                                                                                                      |  |  |
| Aufzug ist zu langsam                                       | und die Überlastfunktion ist nicht korrekt                                                      | Beladung verringern oder größeren                                                                                    |  |  |
| / uizug ist zu langsam                                      | eingestellt.                                                                                    | Umrichter einsetzen.                                                                                                 |  |  |
|                                                             | Abgenutzte Pumpe.                                                                               | Austausch der Pumpe.                                                                                                 |  |  |
|                                                             | Motor bringt koine Leistung                                                                     | Geschwindigkeit reduzieren.                                                                                          |  |  |
|                                                             | Motor bringt keine Leistung.                                                                    | Austausch des Motors                                                                                                 |  |  |
|                                                             |                                                                                                 | Überprüfen des Temp sensors und des                                                                                  |  |  |
|                                                             |                                                                                                 | Temperaturmessumformeranschlusses.                                                                                   |  |  |
|                                                             |                                                                                                 | Liegt die Versorgungsspannung an (12 bis                                                                             |  |  |
|                                                             | Falsche Temperaturmessung                                                                       | 35V DC)?                                                                                                             |  |  |
| <del>.</del> .                                              | r diserie remperatarneceding.                                                                   | Wird die richtige Temperatur gemessen?                                                                               |  |  |
| Bei erhöhter Oltemperatur ist                               |                                                                                                 | (U7-02), Ist der Temperatursensor im OI?                                                                             |  |  |
| der Aufzug zu langsam                                       |                                                                                                 | 04–-51) richtig gesetzt?                                                                                             |  |  |
|                                                             | Temperaturverstärkung ist zu gering.                                                            | P8-01 Wert schrittweise um 10% erhöhen.                                                                              |  |  |
|                                                             | Falacha Tama anatumatanana (P2.40)                                                              | Temperaturreferenz (P3-16) mit der                                                                                   |  |  |
|                                                             | Faische Temperaturreierenz (P3-16).                                                             | tatsächlichen (U7-02) vergleichen.                                                                                   |  |  |
|                                                             | Abgenutzte Pumpe.                                                                               | Austausch der Pumpe.                                                                                                 |  |  |
|                                                             | Unzureichende Wartezeit (P6-02).                                                                | Wert der Wartezeit erhöhen (P6-02).                                                                                  |  |  |
| Unkomfortabler Start unter                                  | Zu hoher Wert des Leckverlusts (P3-07)                                                          | verringern (P3-07).                                                                                                  |  |  |
| normalen Bedingungen                                        | (P6-01)                                                                                         | erhöhen.                                                                                                             |  |  |
| Lange Schleichfahrt wenn                                    | Beschleunigungszelt ist zu gering                                                               | C2-01 Zeit ernonen (~1,5 – 2\$).                                                                                     |  |  |
| Fahrt langsamer als<br>Nenngeschw.                          | Unzureichende Kompensierung der<br>Abbremszeit während der Abbremsung.                          | Parameter P8-05 vorsichtig in Schritten von 0.02 erhöhen.                                                            |  |  |
| Vibrationen während der                                     | Schlechte Motor- und/oder                                                                       | Richtigen Leckölverlust festlegen (P3-07).                                                                           |  |  |
| Anfahrt                                                     | Pumpenleistung                                                                                  | P6-02 Zeit verringern (<1,0s).                                                                                       |  |  |
| Aufzugenenngesehwindigkeit                                  |                                                                                                 | P6-01 Rampe einstellen.                                                                                              |  |  |
| wird erreicht aber zu niedrig                               |                                                                                                 | fahrt mit leerer Kabine 117-03 prüfen                                                                                |  |  |
| für eine Zwischen- und                                      | Falsche Drehmomentreferenz.                                                                     | FallsP3-11 oder P3-12>>U7-03 dann P3-                                                                                |  |  |
| Inspektionsgeschw.                                          |                                                                                                 | 11 oder P3-12 gleich U7-02 setzen.                                                                                   |  |  |
|                                                             | Motorschütz öffnet zu zeitig.                                                                   | Motorschütz soll ca. 1s später abschalten.                                                                           |  |  |
|                                                             | Signal für Endstufensperre kommt zu zeitig.                                                     | Signal ca. 1s später schalten.                                                                                       |  |  |
|                                                             | Zu kleine Rampenzeit.                                                                           | Zeit für C1-04 erhöhen.                                                                                              |  |  |
| Unkomfortables Ende einer<br>Fahrt                          | Keine Schleichfahrt. (letzte Schleich-<br>fahrtzeit wird in U7-07 angezeigt)                    | Verringern der Abbremsparameter (C1-02,<br>C2-03 und C2-04) reduzieren. Oder<br>Abstand der Schachtschalter erhöhen. |  |  |
|                                                             | Wartezeit zum Anhalten ist zu kurz.                                                             | Param. P6-07 schrittweise um 20% erhöhen                                                                             |  |  |
|                                                             | Schleichfahrtgeschwindigkeitsgrenze ist                                                         | P7-05 schrittweise um 0,5 Hz verringern                                                                              |  |  |
|                                                             | zu hoch.                                                                                        | (Achtung! P7-05 > P3-04)                                                                                             |  |  |



| Störung                                                                                            | Mögliche Ursache                                                                                                              | Abhilfe                                                                                                                                                                                                                |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Energiespar / Überlastfunktion ist ausgeschaltet, aber der                                         | Umrichter überlastet.                                                                                                         | Aufzugslast verringern oder einen<br>größeren Umrichter einsetzen.                                                                                                                                                     |  |  |
| Umrichter begrenzt die<br>Geschwindigkeit auf einen<br>Wert kleiner als in U7-08<br>definiert      | Die Zeit der Abbremskurve (C1-02) ist<br>zu groß und S-Kurven (C2-03 & C2-04)<br>sind zu klein.                               | Parameter entsprechend ändern.                                                                                                                                                                                         |  |  |
| Temperaturanzeige (U7-02)                                                                          | Spannungsversorgung des Temperatur-<br>messumformers ist unterbrochen.                                                        | Spannungsversorgung anschließen.                                                                                                                                                                                       |  |  |
| niedrig                                                                                            | Falsche Verdrahtung des<br>Temperaturmessumformers.                                                                           | Verdrahtung korrigieren (siehe Seite14).                                                                                                                                                                               |  |  |
| Nach Erreichen der<br>Schleichfahrt bremst der<br>Umrichter auf eine<br>Iangsamere Geschwindigkeit | Obergrenze der Wiederaufnahme der<br>Schleichfahrt (P7-05) ist niedriger als<br>die Schleichfahrtgeschwindigkeit (P3-<br>04). | Parameter P7-05 erhöhen.<br>(P7-05 = P3-04 + 1Hz)                                                                                                                                                                      |  |  |
| oPE12 Alarm wird                                                                                   | Die Geschwindigkeitsreferenzen sind zueinander nicht plausibel.                                                               | Sicher stellen dass P3-01>P3-02>P3-<br>03>P3-04 oder P3-04>P3-07xP6-05 oder<br>P3-04>P3-07xP6-06 oder P3-01< E1-06ist.                                                                                                 |  |  |
| angezeigt                                                                                          | Überprüfen, ob Temperatur-Konverter<br>richtig angeschlossen ist, Sehe U7-02                                                  | Verbindung korrigieren und Lernfahrt<br>wiederholen.                                                                                                                                                                   |  |  |
| oPE02 Alarm wird angezeigt                                                                         | Die Parameter sind außerhalb des zulässigen Bereichs.                                                                         | Enter drücken, um den unsachgemäßen<br>Parameter anzuzeigen und zu korrigieren.                                                                                                                                        |  |  |
| Er-12 Alarm wird während<br>Auto-Tuning angezeigt                                                  | Auto-Tuning wurde gestartet ohne den<br>Motor anzuschließen bzw. Schaltschütz<br>nicht angezogen.                             | Motor anklemmen bzw. Schaltschütz<br>überprüfen. Umrichter für 1 Minute<br>ausschalten, um Fehler zurückzusetzen.                                                                                                      |  |  |
| Sehr hohe Vibration in der<br>Aufzugskabine während der<br>Schleichfahrt                           | Die Pumpe hat eine hohe Pulsation bei geringen Geschwindigkeiten.                                                             | Einbau eines Pulsationsdämpfers (siehe<br>Ersatzteilliste im Anhang 1 und 4) oder<br>eine hochwertigere Pumpe verwenden.                                                                                               |  |  |
| Sehr hohe Vibration in der<br>Aufzugskabine während der<br>Nenngeschwindigkeit                     | Die Pumpe (Drehzahl) arbeitet im<br>Bereich der Eigenfrequenz der<br>Aufzugsstruktur.                                         | Pumpe mit höherer oder niedriger<br>Drehzahl verwenden oder eine<br>hochwertigere Pumpe verwenden.                                                                                                                     |  |  |
| LETA Alarm wird angezeigt                                                                          | Die Dauer der Schleichfahrt ist länger als 60s.                                                                               | Steuersignale überprüfen.<br>Eingabewerte überprüfen oder Lernfahrt<br>nochmals ausführen.                                                                                                                             |  |  |
| NEGTC oder NO<br>LOAD Alarm wird<br>angezeigt                                                      | Aufzug fährt ohne Last.                                                                                                       | Falls der Aufzug beladen war die<br>Lernfunktion wiederholen.                                                                                                                                                          |  |  |
| SEQF Alarm wird                                                                                    | Die Abbremsparameter sind falsch definiert.                                                                                   | Verringern der Abbremsparameter (C1-02,<br>C2-03 und C2-04) reduzieren oder den<br>Abstand der Schachtschalter erhöhen.                                                                                                |  |  |
| angezeigt                                                                                          | Steuersignale für Betrieb (S1) und für die Geschwindigkeits-auswahl (z.B. S4) sind vertauscht.                                | Steuersignale richtig ansteuern.                                                                                                                                                                                       |  |  |
| Die Aufzugssteuerung                                                                               | Der Umrichter befindet sich im Alarm Modus.                                                                                   | Fehler suchen, den Fehler beheben und<br>anschließend Reset drücken.                                                                                                                                                   |  |  |
| Umrichter reagiert aber nicht                                                                      | Steuerleitungen unterbrochen oder<br>falsch angeschlossen.                                                                    | Verdrahtung überprüfen.                                                                                                                                                                                                |  |  |
| Hbb oder HbbF Alarm                                                                                | Der Sicherheitskreis hat ausgelöst und den Frequenz-umrichter ausgeschaltet.                                                  | Den Sicherheitskreis überprüfen.                                                                                                                                                                                       |  |  |
| wird angezeigt                                                                                     | HC ist nicht mit H1 und H2 gebrückt.                                                                                          | HC mit H1 und H2 brücken.                                                                                                                                                                                              |  |  |
|                                                                                                    | Temperaturmessung ist falsch,<br>überprüfen U7-02                                                                             | Korrigieren Temperaturwandler Verbin-<br>dungen nach dem Handbuch Seite 15                                                                                                                                             |  |  |
| <b>oL2</b> Alarm wird angezeigt                                                                    | Beladung ist zu hoch oder Frequenz-<br>umrichter hat eine zu geringe Leistung.                                                | Beladung reduzieren oder einen größeren<br>Frequenzumrichter verwenden.                                                                                                                                                |  |  |
|                                                                                                    | Die Spannung für die V/f Charakteristik ist zu hoch.                                                                          | E1-08 und/oder E1-10 verringern                                                                                                                                                                                        |  |  |
|                                                                                                    | Beschleunigungszeit zu kurz.                                                                                                  | C1-01 erhöhen.                                                                                                                                                                                                         |  |  |
| <b>bb</b> Alarm (Base Block) wird angezeigt                                                        | An Eingang S2 oder S3 liegen<br>Steuersignale an, welche keinen Start<br>zulassen.                                            | Überprüfen der Eingangssignale und deren Sequenz.                                                                                                                                                                      |  |  |
| End1, End2 oder<br>End3 Alarm wird angezeigt                                                       | Auto Tuning wurde abgebrochen                                                                                                 | Auto Tuning wurde erfolgreich durchgeführt,<br>aber einige der Motoreinstellungen liegen<br>außerhalb des üblichen Bereichs. Die<br>Meldungen können zu diesem Zeitpunkt des<br>Auto Tuning Vorgangs ignoriert werden. |  |  |



Für weitere Informationen und Behebungen von Programmierfehlermeldungen (oPE01 bis oPE10), Auto-Tuning Fehlermeldungen (Er-01 bis Er-12 und End 1 bis End 3) und andere siehe Kurzanleitung L1000H oder Bedienungsanleitung L1000V.

#### 11.2 IN ABWÄRTSRICHTUNG

| Störung                                                   | Mögliche Ursache                                                                             | Abhilfe                                                                                                         |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
|                                                           | Magnetspule D ohne Strom oder zu wenig Spannung.                                             | Elektrische Anlage prüfen. Siehe Vermerk A.                                                                     |  |  |
|                                                           | Drossel 6 zu wenig geöffnet.                                                                 | Drossel 6 weiter öffnen.                                                                                        |  |  |
| Keine Senkfahrt                                           | Drossel 8 zu weit offen.                                                                     | Drossel 8 vorsichtig eindrehen.<br>Achtung: Gefahr des Durchfahrens nach<br>unten.                              |  |  |
|                                                           | O-Ring UO am Senkkolben X undicht.                                                           | O-Ring wechseln → siehe EV<br>Ersatzteilliste.                                                                  |  |  |
|                                                           | Magnetspule C ohne Strom oder zu wenig Spannung.                                             | Magnetspule C anheben um<br>magnetische Kraft zu testen. Elektrische<br>Anlage überprüfen. Siehe Vermerk A.     |  |  |
| Keine Vollgeschwindigkeit                                 | Einstellung 7 (Vollgeschwindigkeit) zu<br>wenig geöffnet.                                    | Einstellung 7 weiter öffnen.                                                                                    |  |  |
|                                                           | Einsatzgröße Senkkolben X zu klein.                                                          | Einsatzgröße überprüfen (siehe Tabelle EV-Prospekt Seite 6).                                                    |  |  |
|                                                           | Magnetspule C und D vertauscht.                                                              | Magnetspulen anheben, um<br>magnetische Kraft zu testen oder dann<br>tauschen (C+D). Siehe Vermerk A.           |  |  |
| Keine Schleichfahrt, Aufzug bleibt vor der Haltestelle    | Magnetspule D ohne Strom oder zu wenig Spannung.                                             | Elektrische Anlage überprüfen. Siehe<br>Vermerk A.                                                              |  |  |
| stehen                                                    | Einstellung 9 zu weit eingedreht.                                                            | Einstellung 9 herausdrehen, auf ca.<br>0,05m/s Schleichfahrt-geschwindigkeit<br>einstellen.                     |  |  |
|                                                           | Feder 9F in Drossel 9 ist defekt.                                                            | Feder an Drossel 9 ersetzen.                                                                                    |  |  |
|                                                           | Drossel 8 zu weit eingedreht. Filter von<br>Drossel 8 verschmutzt oder Drossel 8<br>defekt.  | Drossel 8 etwa ½ Drehung<br>herausdrehen.<br>Drossel 8 tauschen.                                                |  |  |
| Keine Schleichfahrt, Aufzug<br>durchfährt die Haltestelle | Einstellung 9 zu weit aufgedreht.                                                            | Einstellung 9 hineindrehen, auf ca.<br>0,05m/s Schleichfahrt-geschwindigkeit<br>einstellen.                     |  |  |
|                                                           | Magnetventil C verschmutzt oder<br>Magnetnadel DN und Sitz DS beschädigt.                    | Magnetnadel und Sitz reinigen oder austauschen.                                                                 |  |  |
|                                                           | Innerer O-Ring FO am Flansch 7F undicht.                                                     | O-Ring wechseln → siehe EV<br>Ersatzteilliste                                                                   |  |  |
|                                                           | Magnetventil D-Rohr nicht fest angezogen.                                                    | Magnetventil D-Rohr fester anziehen.                                                                            |  |  |
| Aufzug sinkt sohr schooll                                 | Drossel 8 zu wenig geöffnet.                                                                 | Drossel 8 um etwa ½ Drehung<br>herausdrehen.                                                                    |  |  |
| nur Vollgeschwindigkeit                                   | Magnetventil C durch Verschmutzung keine Funktion.                                           | Magnetnadel und Sitz reinigen oder austauschen.                                                                 |  |  |
|                                                           | Einstellung 9 durch Verschmutzung keine<br>Funktion.                                         | Drossel 9 reinigen oder tauschen.                                                                               |  |  |
|                                                           | Mögliche Senkleckagen-Ursachen siehe<br>"Technische Dokumentation Interne<br>Undichtigkeit". | Eine Dichtstelle ersetzen, bevor zur<br>nächsten möglichen Leckage-Stelle<br>weitergegangen wird.               |  |  |
|                                                           | Magnetventil D verschmutzt oder<br>beschädigt zwischen Magnetnadel DN und<br>Sitz DS.        | Magnetnadel und Sitz reinigen oder austauschen.                                                                 |  |  |
| innerer Undichtigkeit<br>(Nachholen)                      | O-Ring XO am Senkventil X undicht.                                                           | O-Ring wechseln → siehe EV<br>Ersatzteilliste.<br>Falls der Senkkolben kompensiert ist,<br>den Kolben ersetzen. |  |  |
|                                                           | O-Ring VO am Rückschlag-Ventil V<br>undicht.                                                 | Rückschlag-Ventil wechseln → siehe EV<br>Ersatzteilliste.                                                       |  |  |
|                                                           | O-Ring WO am Stößel-Ventil V undicht.                                                        | O-Ring wechseln→ siehe EV<br>Ersatzteilliste.                                                                   |  |  |



|                                              | Innerer O-Ring FO am Flansch 4F undicht.                                                | O-Ring wechseln→ siehe EV<br>Ersatzteilliste.                                   |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
|                                              | O-Ring HO am Handablass H undicht.                                                      | Notablass ersetzen.                                                             |  |  |
|                                              | HP: Handpumpe undicht.                                                                  | Saugrohr entfernen und nachsehen, ob<br>Handpumpe leckt. Handpumpe<br>ersetzen. |  |  |
|                                              | HX/MX: Drossel 8M zu weit eingedreht.                                                   | Drossel 8 herausdrehen.                                                         |  |  |
| Aufzug sackt wegen innerer Undichtigkeit der | HX/MX: Drossel 9M undicht. Schmutz<br>zwischen Nadel DN und Sitz DS oder<br>beschädigt. | Magnetnadel und Sitz reinigen oder austauschen.                                 |  |  |
| Zusatzkomponenten ab                         | HX/MX: O-Ring XO am Senkventil YM<br>undicht.                                           | O-Ring wechseln→ siehe EV<br>Ersatzteilliste.                                   |  |  |
|                                              | HX/MX: Notablass undicht.                                                               | Notablass ersetzen.                                                             |  |  |
|                                              | Kontraktion durch Ölabkühlung, besonders bei Öltemp.über 35°C.                          | Eventuell Ölkühlung vorsehen.                                                   |  |  |

*A:* Zur Prüfung, ob Magnetspulen unter Spannung sind, 6-kant-Mutter (19mm) entfernen. Durch Abheben der Spule lässt sich die spürbare magnetische Kraft einer unter Strom stehenden Spule prüfen, sowie die Aufzugs-Funktion umgehen.

Tabelle 18: Fehlersuche in Abwärtsrichtung

#### **12. PARAMETER BEI UNBEKANNTEN MOTOREN**

Angenommen das Typenschild zeigt folgende Werte: 30kW, 400/690VAC, 50Hz, 3 Phasen, Delta In: 64A, 2780min<sup>-1</sup>

| Leistung | 30 kW    | 50 Hz, 400V-Delta |         |  |
|----------|----------|-------------------|---------|--|
|          | 40 HP    | 3 Phasen,         | 2780    |  |
| Туре     |          |                   |         |  |
| E1-01    | 400 VAC  | E2-01             | 64 A    |  |
| E1-04    | 50 Hz    | E2-02             | 2.00 Hz |  |
| E1-05    | 400 VAC  | E2-03             | 35.2 A  |  |
| E1-06    | 50 Hz    | E2-04             | 2       |  |
| E1-07    | 3.0 Hz   | E2-05             | 0.900 Ω |  |
| E1-08    | 26.4 VAC | E2-06             | 17.0%   |  |
| E1-09    | 0.5 Hz   | E2-07             | 0.50    |  |
| E1-10    | 4.8 VAC  | E2-08             | 0.75    |  |
| E1-11    | 0.0 Hz   | E2-09             | 0.0%    |  |
| E1-12    | 0.0Hz    | E2-11             | 30 kW   |  |
| E1-13    | 400 VAC  | E2-12             | 1.30    |  |

Zuerst ein Autotuning bei stehendem Motor durchführen. Der Umlaufkolben muss dafür nicht entfernt werden, da der Motor bei diesem Autotuning nicht gestartet wird.

Im "Auto Tuning" Menü T1-01=1 setzen, dann die anderen T1-xx Parameter entsprechend dem Motortypenschild eingeben. RUN drücken. Die meisten der Motorparameter werden dadurch berechnet. Jedoch müssen einige Parameter wie unten vorgeschlagen von Hand geändert werden.

PS: Um auf die Motorparameter zuzugreifen A1-01=2 setzen (erweitertes Menü).

E1-01, E1-05, E1-13=Spannungsversorgung des Motors (400VAC)

E1-04, E1-06=Motorfrequenz (50Hz)

E1-07= 3.0Hz, E1-08=26.4VAC

E1-09= 0.5Hz, E1-10= 4.8VAC E2-04= Anzahl der Motorpole (2)

E1-11, E1-12=0.0Hz

E2-01= Nennstrom (64A)E2-02= 2.00Hz

E2-11= Motorleistung (30kW)

E2-03= 0.55 x E2-01 = 0.55 x 64A = 35.2A

E2-05= bitte den Wert nicht ändern (er wird während des Autotunings ermittelt)

E2-06=17%, E2-07=0.50, E2-08=0.75, E2-09=0.0%



## **13. ANHANG 1 - MOTOR PARAMETER**

Motor Type: ELMO Srl.

| Leis- | 7,7 kW 50 Hz, 4    |                                | 50 Hz, 400V-Delta |       | 9,5 kW   | 50 Hz, 400V-Delta |             |
|-------|--------------------|--------------------------------|-------------------|-------|----------|-------------------|-------------|
| tung  | 10,5 HP            | 3 Phase, 2780min <sup>-1</sup> |                   |       | 13 HP    | 3 Phase           | , 2780min⁻¹ |
| Туре  | pe S342A-77T690NEY |                                |                   | Туре  | S342A-95 | T690NEY           |             |
| E1-01 | 400 VAC            | E2-01                          | 18,5 A            | E1-01 | 400 VAC  | E2-01             | 23,4 A      |
| E1-03 | F                  | E2-02                          | 3,00 Hz           | E1-03 | F        | E2-02             | 3,00 Hz     |
| E1-04 | 60 Hz              | E2-03                          | 10,80 A           | E1-04 | 60 Hz    | E2-03             | 15,0 A      |
| E1-05 | 400 VAC            | E2-04                          | 2                 | E1-05 | 400 VAC  | E2-04             | 2           |
| E1-06 | 50 Hz              | E2-05                          | 2,158 Ohm         | E1-06 | 50 Hz    | E2-05             | 1,652 Ohm   |
| E1-07 | 3.0 Hz             | E2-06                          | 15,5%             | E1-07 | 3.0 Hz   | E2-06             | 19,6%       |
| E1-08 | 31.7 VAC           | E2-07                          | 0,50              | E1-08 | 26.4 VAC | E2-07             | 0,50        |
| E1-09 | 0.5 Hz             | E2-08                          | 0,75              | E1-09 | 0.5 Hz   | E2-08             | 0,75        |
| E1-10 | 5.8 VAC            | E2-09                          | 0,0%              | E1-10 | 4.8 VAC  | E2-09             | 0,0%        |
| E1-11 | 0.0 Hz             | E2-11                          | 7,7 kW            | E1-11 | 0.0 Hz   | E2-11             | 9,5 kW      |
| E1-12 | 0.0Hz              | E2-12                          | 1,30              | E1-12 | 0.0Hz    | E2-12             | 1,30        |
| E1-13 | 400 VAC            |                                |                   | E1-13 | 400 VAC  |                   |             |

| Leis- | 11 kW           | 50 Hz, 400V-Delta              |           | Leistung | 12 kW           | 50 Hz, 400V-Delta |                         |
|-------|-----------------|--------------------------------|-----------|----------|-----------------|-------------------|-------------------------|
| tung  | 15 HP           | 3 Phase, 2790min <sup>-1</sup> |           |          | 16 HP           | 3 Phase           | , 2790min <sup>-1</sup> |
| Туре  | S342A11-T690NEY |                                |           | Туре     | S342A12-T690NEY |                   |                         |
| E1-01 | 400 VAC         | E2-01                          | 26,8 A    | E1-01    | 400 VAC         | E2-01             | 27,8 A                  |
| E1-03 | F               | E2-02                          | 3,00 Hz   | E1-03    | F               | E2-02             | 3,00 Hz                 |
| E1-04 | 60 Hz           | E2-03                          | 18,5 A    | E1-04    | 60 Hz           | E2-03             | 16,7 A                  |
| E1-05 | 400 VAC         | E2-04                          | 2         | E1-05    | 400 VAC         | E2-04             | 2                       |
| E1-06 | 50 Hz           | E2-05                          | 1,420 Ohm | E1-06    | 50 Hz           | E2-05             | 1,208 Ohm               |
| E1-07 | 3.0 Hz          | E2-06                          | 19,6%     | E1-07    | 3.0 Hz          | E2-06             | 19,6%                   |
| E1-08 | 26.4 VAC        | E2-07                          | 0,50      | E1-08    | 31.7 VAC        | E2-07             | 0,50                    |
| E1-09 | 0.5 Hz          | E2-08                          | 0,75      | E1-09    | 0.5 Hz          | E2-08             | 0,75                    |
| E1-10 | 4.8 VAC         | E2-09                          | 0,0%      | E1-10    | 5.8 VAC         | E2-09             | 0,0%                    |
| E1-11 | 0.0 Hz          | E2-11                          | 11 kW     | E1-11    | 0.0 Hz          | E2-11             | 12 kW                   |
| E1-12 | 0.0Hz           | E2-12                          | 1,30      | E1-12    | 0.0Hz           | E2-12             | 1,30                    |
| E1-13 | 400 VAC         |                                |           | E1-13    | 400 VAC         |                   |                         |

| Leis- | 13 kW           | 50 Hz, 400V-Delta              |           | Leistung | 14,7 kW         | 50Hz, 400V- Delta |             |
|-------|-----------------|--------------------------------|-----------|----------|-----------------|-------------------|-------------|
| tung  | 17,5 HP         | 3 Phase, 2760min <sup>-1</sup> |           |          | 20 HP           | 3 Phase           | e,2800min⁻¹ |
| Туре  | S342A13-T690NEY |                                |           | Туре     | S442A147T690NEY |                   |             |
| E1-01 | 400 VAC         | E2-01                          | 29,7 A    | E1-01    | 400 VAC         | E2-01             | 32,0 A      |
| E1-03 | F               | E2-02                          | 3,00 Hz   | E1-03    | F               | E2-02             | 3,00 Hz     |
| E1-04 | 60 Hz           | E2-03                          | 17,2 A    | E1-04    | 60 Hz           | E2-03             | 18,8 A      |
| E1-05 | 400 VAC         | E2-04                          | 2         | E1-05    | 400 VAC         | E2-04             | 2           |
| E1-06 | 50 Hz           | E2-05                          | 1,238 Ohm | E1-06    | 50 Hz           | E2-05             | 1,046 Ohm   |
| E1-07 | 3.0 Hz          | E2-06                          | 17,2%     | E1-07    | 3.0 Hz          | E2-06             | 17,2%       |
| E1-08 | 31.7 VAC        | E2-07                          | 0,50      | E1-08    | 31.7 VAC        | E2-07             | 0,50        |
| E1-09 | 0.5 Hz          | E2-08                          | 0,75      | E1-09    | 0.5 Hz          | E2-08             | 0,75        |
| E1-10 | 5.8 VAC         | E2-09                          | 0,0%      | E1-10    | 5.8 VAC         | E2-09             | 0,0%        |
| E1-11 | 0.0 Hz          | E2-11                          | 13 kW     | E1-11    | 0.0 Hz          | E2-11             | 14,7 kW     |
| E1-12 | 0.0Hz           | E2-12                          | 1,30      | E1-12    | 0.0Hz           | E2-12             | 1,30        |
| E1-13 | 400 VAC         |                                |           | E1-13    | 400 VAC         |                   |             |



## **14. ANHANG 2 – ERSATZTEILLISTE**

| Blain Artikelnummer | Bezeichnung                                                         |
|---------------------|---------------------------------------------------------------------|
| 105188              | Yaskawa Umrichter L1000H 3 KW                                       |
| 500045              | Yaskawa Umrichter L1000H 4 KW                                       |
| 105189              | Yaskawa Umrichter L1000H 5,5 KW                                     |
| 500047              | Yaskawa Umrichter L1000H 7,5 KW                                     |
| 500048              | Yaskawa Umrichter L1000H 11 KW                                      |
| 500049              | Yaskawa Umrichter L1000H 15 KW                                      |
| 105190              | Yaskawa EMV-Netzfilter 400VAC 15A (für 3KW & 4 KW Umrichter)        |
| 105191              | Yaskawa EMV-Netzfilter 400VAC 30A (für 5,5 KW & 7,5 KW Umrichter)   |
| 105192              | Yaskawa EMV-Netzfilter 400VAC 50A (für 11 KW & 15 KW Umrichter)     |
| 105197              | Yaskawa Netzdrossel IP00 400VAC 8A (für 3KW & 4 KW Umrichter)       |
| 105198              | Yaskawa Netzdrossel IP00 400VAC 16A (für 5,5 KW & 7,5 KW Umrichter) |
| 105199              | Yaskawa Netzdrossel IP00 400VAC 21A (für 11 KW Umrichter)           |
| 105200              | Yaskawa Netzdrossel IP00 400VAC 27A (für 15 KW Umrichter)           |
| 105453              | Yaskawa Optionale Fernbedienung                                     |
| 500235              | Blain EV4 0,75" Umbausatz (beinhaltet Artikel 500039 & 500052)      |
| 500038              | Blain EV4 1,5-2" Umbausatz (beinhaltet Artikel 500039 & 500052)     |
| 500039              | Temperaturmessumformer für Pt100                                    |
| 500052              | Temperatursensor Pt100                                              |
| 105246              | Pulsationsdämpfer 25 bar                                            |
| 105247              | Pulsationsdämpfer 30 bar                                            |



## **15. ANHANG 3 – ÜBERSICHT LIEFERUMFANG EV4**

| Produkt                             | Details |
|-------------------------------------|---------|
| EV4 Ventil                          |         |
| Frequenzumrichter Yaskawa<br>L1000H |         |
| Temperatursensor                    |         |
| Temperaturmessumformer              |         |
| EMV-Netzfilter Yaskawa              |         |
| Netzdrossel Yaskawa                 |         |
| Kurzanleitung                       |         |
| EV4 Bedienungsanleitung             |         |

Bemerkung: Die Bilder sind nur zur Anschauung. Das tatsächliche Produkt kann davon abweichen.



## **16. ANHANG 4 – DESIGN DES AGGREGATS**

#### Bei Auftreten von Vibrationen in der Kabine:

In seltenen Fällen können Vibrationen, besonders bei niedrigen Frequenzen, in der Kabine auftreten. Eine Vorhersage kann nicht genau getroffen werden, da dies vom Aufbau des Aufzugssystems und dem Schacht abhängt. In einem solchen Fall sollte man versuchen die Körperschallquellen (Metall-Metall Verbindungen entfernen, Tank mit elastischen Standfüße versehen usw.) und die Flüssigkeitsgeräusche (bei fester Verrohrung ein 1 Meter langes Schlauchstück einfügen) zu eliminieren. Der Einsatz von Ausdehnungsgefäßen (Geräuschdämpfern) kann das Problem nicht beheben. Die Vibrationen hängen hauptsächlich mit dem Leckstrom und der Pulsation der Pumpe, Motorverhalten bei niedrigen Frequenzen, Druck, Eigenfrequenz des Aufzugssystems und der Auslegung der Hydraulik zusammen.

Eine einfache Lösung ist das Anbringen eines kleinen Pulsationsdämpfers.

Blain Hydraulics empfiehlt hierfür einen Pulsationsdämpfer mit einer Größe von 0,075 oder 0,16 Liter der Fa. Hydac zu verwenden. Der vorgespannte Druck sollte das 0,7 bis 0,8-fache des statischen Minimaldruckes des Aufzugsystems haben.

Um den Pulsationsdämpfer einfach installieren zu können, empfehlen wir die Verrohrung im Tank, wie in Bild 1 gezeigt, auszuführen. Falls störende Vibrationen in der Kabine auftreten, kann der Pulsationsdämpfer dann mit einem Doppelnippel am Z1 Anschluss des EV4 Ventils angebracht werden.

Falls Vibrationen während des Starts oder bei niedrigen Motorfrequenzen auftreten, die mittels des Pulsationsdämpfers nicht beseitigt werden können, kann dies durch die Leckage der Pumpe oder durch eine schlechte Motorperformance hervorgerufen werden.

Falls die Geräuschentwicklung bei Nenngeschwindigkeit höher ist, als vom Pumpenhersteller angegeben, sollte die Pumpe gegen eine geräuscharme gewechselt werden.

In wenigen Fällen kann die Eigenfrequenz des Aufzugsystems mit der Pulsationsfrequenz der Pumpe in Resonanz geraten, was ebenfalls zu Vibrationen führt. Falls dies auftritt kann ein zweiter Pulsationsdämpfer an der Tankverrohrung angebracht werden (Anschluss A, G<sup>1</sup>/<sub>2</sub><sup>"</sup> Innengewinde). Wird der Anschluss A nicht genutzt, ist dieser verschlossen.





Bild A4-1: Installation des Pulsationsdämpfers





## EV4 Set Up (SW>1310) – Kurzanleitung -

#### 1) Eingabe der Motorparameter (E1-xx, Ex) Prog. Menu

**Wie?** Setze **A1-01** auf **2** (dies erlaubt den Zugang zu allen **E1** und **E2** Parameter). Die Motorparameter (**E1-xx** und **E2-xx**) für **ELMO** Motoren sind der Bedienungsanleitung des EV4 (Anhang 1) zu entnehmen. Bei anderen Motoren ist ein **Auto Tuning** durchzuführen (siehe Bedienungsanleitung EV4 Seite 23); für

technischen Support kontaktieren Sie bitte Blain Hydraulics. Setze A1-01 auf 3 (Dies erleichtert die Set-up Prozedur).

## 2) Überprüfung der Motordrehrichtung

**Wie?** Schleichfahrt-Signal eingeben (S1) und die Bewegung oder die Geräuschentwicklung der Pumpe beobachten. Falls sich der Motor in die entgegengesetzte Richtung dreht; ist die Drehrichtung mit dem Parameter *b1-14* zu ändern (z.B. falls b1-14 gleich 1 ist, dann den Wert auf 0 setzen bzw. umgekehrt).

### 3) Überprüfen der Öltemperatur Anzeige Menu →Überprüfen, ob Temp.sensor im Öl ist.

**Wie?** Den Parameter für die Öltemperatur [°C] **U7-02** im "Anzeige Menu" ablesen. Weicht dieser erheblich von der tatsächlichen Öltemperatur ab (z.B. ±50°C), ist die Verbindung zum Temperaturmessumformer zu überprüfen. (siehe Seite 12 oder 14 der EV4 Bedienungsanleitung).

<u>Bitte stellen Sie sicher, dass die Öltemperatur zwischen 18°C und 30°C ist!</u>

#### 4) Ermitteln der Pumpenparameter (P1-11 bis P1-15)

Wie? <u>www.blain.de/calc</u> im Internet aufrufen oder das Android App "EV4 Calculator" vom Google Play Store herunterladen. Öl- und Motortype in **Tabelle 1** auswählen und dann die Aufzugsdaten in **Tabelle 2** eingeben. Die errechneten Pumpenparameter sind dann der **Tabelle 3** zu entnehmen.



## 5) Eingabe der Abbremsparameter (C1-02, C2-03 und C2-04)

**Wie?** Entrehmen Sie die Werte für **C1-02, C2-03** und **C2-04** aus Tabelle 2 und geben Sie diese in den Umrichter ein. (*Programm Menü*  $\rightarrow$  *Auswahl* **Cx-xx** *Parameter*  $\rightarrow$  *ENTER drücken* $\rightarrow$  *Werte ändern*  $\rightarrow$  *ENTER drücken*).



## 6) Eingabe von Öltyp und Aufzugsdaten in den Umrichter

**Wie?** Programm Menü  $\rightarrow$  *P1* **Parameter** wählen  $\rightarrow$  *ENTER drücken* $\rightarrow$  Eingabe des *P1-01* Werts  $\rightarrow$  ENTER drücken. Dies für alle *P1-xx* Parameter durchführen.

| P1 Parameter | Beschreibung                            | Beispiel     | Parametertyp              |  |
|--------------|-----------------------------------------|--------------|---------------------------|--|
| P1-01        | Hydraulik Öl ISO VG Nummer              | 3: ISO VG 46 |                           |  |
| P1-02        | Temperatur bei 100 cSt                  | 25°C         | Ölparameter               |  |
| P1-03        | Temperatur bei 25 cSt                   | 55°C         |                           |  |
| P1-04        | Kolbendurchmesser                       | 85mm         |                           |  |
| P1-05        | Anzahl der Zylinder                     | 1            |                           |  |
| P1-06        | Übersetzungsverhältnis                  | 1            | 1<br>18bar<br>1000kg<br>3 |  |
| P1-07        | Statischer Druck bei leerer Kabine      | 18bar        |                           |  |
| P1-08        | Tragkraft                               | 1000kg       |                           |  |
| P1-09        | Dynamische Druckerhöhung                | 3            |                           |  |
| P1-11        | Durchfluss bei 100cSt & maximalem Druck | 72,7 l/min   |                           |  |
| P1-12        | Durchfluss bei 25cSt & maximalem Druck  | 64,2 l/min   | Pumpenparameter           |  |
| P1-13        | Nenndrehzahl der Pumpe                  | 2750         | (erhalten sie von         |  |
| P1-14        | Durchfluss bei leerer Kabine & 100cSt   | 76,2 l/min   | www.blain.de/calc)        |  |
| P1-15        | Durchfluss bei 1 bar & 100cSt           | 81,3 l/min   |                           |  |
| P1-16        | Nenngeschwindigkeit                     | 0,40 m/s     |                           |  |
| P1-17        | Zwischengeschwindigkeit                 | 0,35 m/s     | Geschwindigkeits-         |  |
| P1-18        | Inspektionsgeschwindigkeit              | 0,30 m/s     | parameter                 |  |
| P1-19        | Schleichfahrtgeschwindigkeit            | 0,06 m/s     |                           |  |

#### 7) P4-01 auf 1 setzen: Grundberechnungen wird durchgeführt

**Wie?** Programm Menü  $\rightarrow$  *P4-01* **Parameter** wählen  $\rightarrow$  *ENTER drücken* $\rightarrow$  Wert auf 1 setzen  $\rightarrow$  ENTER drücken (Nach dem Drücken von ENTER wird der Wert automatisch wieder auf 0 gesetzt).

## 8) Stellen Sie sicher, dass der Aufzug unbeladen ist und die Schachtschalter eine Schleichfahrt zulassen (siehe Seite 29, eventuell die Schaltabstände korrigieren)

#### 9) P4-01 auf 2 setzen: Lernfahrt vorbereiten:

**Wie?** Programm Menü  $\rightarrow$  *P4-01* **Parameter** wählen  $\rightarrow$  Wert auf 2 setzen  $\rightarrow$  ENTER drücken. Nach dem Drücken blinkt die ALM LED und der Umrichter fordert Sie auf eine Lernfahrt durchzuführen.

#### 10) Lernfahrt durchführen: Aufzug zur obersten Haltestelle fahren lassen

#### 11) P4-01 auf 3 setzen: SET-UP Daten speichern:

**Wie?** Programm Menü  $\rightarrow$  *P4-01* **Parameter** wählen  $\rightarrow$  Wert auf 3 setzen  $\rightarrow$  ENTER drücken (nach dem Drücken erlischt die ALM LED)

#### Falls nötig FINE TUNING durchführen (siehe Seite 29 der EV4 Bedienungsanleitung)

Notiz 1: Das Auto-Tuning ist erfolgreich, auch wenn es mit den Fehlern End 1, End 2 oder End 3 endet.

**Notiz 2:** Die Anschlüsse **HC**, **H1** und **H2** müssen im Inverter gebrücket sein, ansonsten erfolgt kein Motorstart beim Auto-Tuning. Ist der Modus "Safe Disable function" nicht benutzt, müssen die Anschlüsse **HC**, **H1**, **H2** ebenfalls gebrücket sein.

Notiz 3: Um unbekannte Motordaten zu berechnen, siehe EV4 Bedienungsanleitung Seite 54.



## Notizen:



## Notizen:



Pfaffenstrasse 1 Boellinger Hoefe 74078 Heilbronn Germany Tel. 07131 2821-0 Fax 07131 485216 http://www.blain.de e-mail:info@blain.de



Manufacturer of the Highest Quality: Control Valves for Elevators Tank Heaters - Hand Pumps Pipe Rupture Valves - Ball Valves